Cargando…
Loss of endothelial glucocorticoid receptor accelerates organ fibrosis in db/db mice
Endothelial cells play a key role in maintaining homeostasis and are deranged in many disease processes, including fibrotic conditions. Absence of the endothelial glucocorticoid receptor (GR) has been shown to accelerate diabetic kidney fibrosis in part through up regulation of Wnt signaling. The db...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055184/ https://www.ncbi.nlm.nih.gov/pubmed/36993478 http://dx.doi.org/10.1101/2023.03.20.533532 |
Sumario: | Endothelial cells play a key role in maintaining homeostasis and are deranged in many disease processes, including fibrotic conditions. Absence of the endothelial glucocorticoid receptor (GR) has been shown to accelerate diabetic kidney fibrosis in part through up regulation of Wnt signaling. The db/db mouse model is a model of spontaneous type 2 diabetes that has been noted to develop fibrosis in multiple organs over time, including the kidneys. This study aimed to determine the effect of loss of endothelial GR on organ fibrosis in the db/db model. Db/Db mice lacking endothelial GR showed more severe fibrosis in multiple organs compared to endothelial GR-replete db/db mice. Organ fibrosis could be substantially improved either through administration of a Wnt inhibitor or metformin. IL-6 is a key cytokine driving the fibrosis phenotype and is mechanistically linked to Wnt signaling. The db/db model is an important tool to study mechanisms of fibrosis and its phenotype in the absence of endothelial GR highlights the synergistic effects of Wnt signaling and inflammation in the pathogenesis or organ fibrosis. |
---|