Cargando…

Adaptive therapy for ovarian cancer: An integrated approach to PARP inhibitor scheduling

Toxicity and emerging drug resistance are important challenges in PARP inhibitor (PARPi) treatment of ovarian cancer. Recent research has shown that evolutionary-inspired treatment algorithms which adapt treatment to the tumor’s treatment response (adaptive therapy) can help to mitigate both. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Strobl, Maximilian, Martin, Alexandra L., West, Jeffrey, Gallaher, Jill, Robertson-Tessi, Mark, Gatenby, Robert, Wenham, Robert, Maini, Philip, Damaghi, Mehdi, Anderson, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055330/
https://www.ncbi.nlm.nih.gov/pubmed/36993591
http://dx.doi.org/10.1101/2023.03.22.533721
Descripción
Sumario:Toxicity and emerging drug resistance are important challenges in PARP inhibitor (PARPi) treatment of ovarian cancer. Recent research has shown that evolutionary-inspired treatment algorithms which adapt treatment to the tumor’s treatment response (adaptive therapy) can help to mitigate both. Here, we present a first step in developing an adaptive therapy protocol for PARPi treatment by combining mathematical modelling and wet-lab experiments to characterize the cell population dynamics under different PARPi schedules. Using data from in vitro Incucyte Zoom time-lapse microscopy experiments and a step-wise model selection process we derive a calibrated and validated ordinary differential equation model, which we then use to test different plausible adaptive treatment schedules. Our model can accurately predict the in vitro treatment dynamics, even to new schedules, and suggests that treatment modifications need to be carefully timed, or one risks losing control over tumour growth, even in the absence of any resistance. This is because our model predicts that multiple rounds of cell division are required for cells to acquire sufficient DNA damage to induce apoptosis. As a result, adaptive therapy algorithms that modulate treatment but never completely withdraw it are predicted to perform better in this setting than strategies based on treatment interruptions. Pilot experiments in vivo confirm this conclusion. Overall, this study contributes to a better understanding of the impact of scheduling on treatment outcome for PARPis and showcases some of the challenges involved in developing adaptive therapies for new treatment settings.