Cargando…

A novel strategy to attenuate porcine reproductive and respiratory syndrome virus by inhibiting viral replication in the target pulmonary alveolar macrophages via hematopoietic-specific miR-142

Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen for the global pork industry. Although modified live virus (MLV) vaccines are commonly used for PRRSV prevention and control,  they still carry a risk of infecting the host and replicating in target cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Shaoyuan, Wu, Weixin, Ge, Xinna, Zhang, Yongning, Han, Jun, Guo, Xin, Zhou, Lei, Yang, Hanchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060136/
https://www.ncbi.nlm.nih.gov/pubmed/37521530
http://dx.doi.org/10.1186/s44280-023-00002-2
Descripción
Sumario:Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen for the global pork industry. Although modified live virus (MLV) vaccines are commonly used for PRRSV prevention and control,  they still carry a risk of infecting the host and replicating in target cells, thereby increasing the likehood of virus recombination and reversion to virulence. In this study, we inserted the target sequence of miR-142 into the nsp2 hypervariable region of PRRSV to inhibit viral replication in its host cells of pigs, with the aim of achieving virus attenuation. The chimeric virus RvJX-miR-142t was successfully rescued and retained its growth characteristics in MARC-145 cells. Furthermore, it did not replicate in MARC-145 cells transfected with miRNA-142 mimic. We also observed limited replication ability of RvJX-miR-142t in pulmonary alveolar macrophages, which are the main cell types that PRRSV infects. Our animal inoculation study showed that pigs infected with RvJX-miR-142t displayed less severe clinical symptoms, lower viremia titers, lighter lung lesions, and significantly lower mortality rates during the first 7 days post-inoculation, in comparison to pigs infected with the backbone virus RvJXwn. We detected a partially deletion of the miR-142 target sequence in the RvJX-miR-142t genome at 14 dpi. It is highly possible that the reversion of viral virulence observed in the later timepoints of our animal experiment was caused by that. Our study provided a new strategy for attenuating PRRSV and confirmed its effectiveness. However, further studies are necessary to increase the stability of this virus under host selection pressure.