Cargando…
Modified extended object tracker for 2D lidar data using random matrix model
The random matrix (RM) model is a typical extended object-modeling method that has been widely used in extended object tracking. However, existing RM-based filters usually assume that the measurements follow a Gaussian distribution, which may lead to a decrease in accuracy when the filter is applied...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060379/ https://www.ncbi.nlm.nih.gov/pubmed/36991153 http://dx.doi.org/10.1038/s41598-023-32236-w |
Sumario: | The random matrix (RM) model is a typical extended object-modeling method that has been widely used in extended object tracking. However, existing RM-based filters usually assume that the measurements follow a Gaussian distribution, which may lead to a decrease in accuracy when the filter is applied to the lidar system. In this paper, a new observation model used to modify an RM smoother by considering the characteristics of 2D LiDAR data is proposed. Simulation results show that the proposed method achieves a better performance than the original RM tracker in a 2D lidar system. |
---|