Cargando…

Evaluation of reference genes for transcript analyses in Komagataella phaffii (Pichia pastoris)

BACKGROUND: The yeast Komagataella phaffii (Pichia pastoris) is routinely used for heterologous protein expression and is suggested as a model organism for yeast. Despite its importance and application potential, no reference gene for transcript analysis via RT-qPCR assays has been evaluated to date...

Descripción completa

Detalles Bibliográficos
Autores principales: Besleaga, Mihail, Vignolle, Gabriel A., Kopp, Julian, Spadiut, Oliver, Mach, Robert L., Mach-Aigner, Astrid R., Zimmermann, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061771/
https://www.ncbi.nlm.nih.gov/pubmed/36991508
http://dx.doi.org/10.1186/s40694-023-00154-1
Descripción
Sumario:BACKGROUND: The yeast Komagataella phaffii (Pichia pastoris) is routinely used for heterologous protein expression and is suggested as a model organism for yeast. Despite its importance and application potential, no reference gene for transcript analysis via RT-qPCR assays has been evaluated to date. In this study, we searched publicly available RNASeq data for stably expressed genes to find potential reference genes for relative transcript analysis by RT-qPCR in K. phaffii. To evaluate the applicability of these genes, we used a diverse set of samples from three different strains and a broad range of cultivation conditions. The transcript levels of 9 genes were measured and compared using commonly applied bioinformatic tools. RESULTS: We could demonstrate that the often-used reference gene ACT1 is not very stably expressed and could identify two genes with outstandingly low transcript level fluctuations. Consequently, we suggest the two genes, RSC1, and TAF10 to be simultaneously used as reference genes in transcript analyses by RT-qPCR in K. phaffii in future RT-qPCR assays. CONCLUSION: The usage of ACT1 as a reference gene in RT-qPCR analysis might lead to distorted results due to the instability of its transcript levels. In this study, we evaluated the transcript levels of several genes and found RSC1 and TAF10 to be extremely stable. Using these genes holds the promise for reliable RT-qPCR results. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40694-023-00154-1.