Cargando…
circACTR2 attenuates gemcitabine chemoresiatance in pancreatic cancer through PTEN mediated PI3K/AKT signaling pathway
BACKGROUND: Recently, accumulating studies have unveiled that circRNAs exert critical function in a variety of tumor biological processes including chemoresistance. Our previous study has found circACTR2 is significantly down-regulated in acquired gemcitabine (GEM)- resistant pancreatic cancer (PC)...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061898/ https://www.ncbi.nlm.nih.gov/pubmed/36991449 http://dx.doi.org/10.1186/s13062-023-00368-8 |
Sumario: | BACKGROUND: Recently, accumulating studies have unveiled that circRNAs exert critical function in a variety of tumor biological processes including chemoresistance. Our previous study has found circACTR2 is significantly down-regulated in acquired gemcitabine (GEM)- resistant pancreatic cancer (PC) cells, which has not been well-explored. Our study aimed to research the function and molecular mechanism of circACTR2 in PC chemoresistance. METHODS: qRT-PCR and western blot analysis was performed to detect gene expression. The effect of circACTR2 on PC GEM resistance were examined by CCK-8 and flow cytometry assays. Whether circACTR2 could sponge miR-221-3p and regulate PTEN expression were determined by bioinformatics analysis, RNA pull-down, and Dual-luciferase reporter assay. RESULTS: circACTR2 was notably down-regulated in a panel of GEM-resistant PC cells lines, and negatively associated with aggressive phenotype and poor prognosis of PC. circACTR2 downregulation contributed to GEM chemoresistance of PC cells with decreased S phase ratio of cell cycle and cell apoptosis, as confirmed by gain- and loss-of-function assays in vitro. In addition, circACTR2 overexpression retarded GEM resistance in vivo. Further, circACTR2 acted as a ceRNA against miR-221-3p, which directly targeted PTEN. The mechanistic studies revealed that loss of circACTR2 promoted GEM resistance in PC through activating the PI3K/AKT signaling pathway by downregulating PTEN expression in a miR-221-3p dependent manner. CONCLUSIONS: circACTR2 reversed the chemoresistance of PC cells to GEM through inhibiting PI3K/AKT signaling pathway by sponging miR-221-3p and upregulating PTEN expression. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13062-023-00368-8. |
---|