Cargando…
Distributionally robust learning-to-rank under the Wasserstein metric
Despite their satisfactory performance, most existing listwise Learning-To-Rank (LTR) models do not consider the crucial issue of robustness. A data set can be contaminated in various ways, including human error in labeling or annotation, distributional data shift, and malicious adversaries who wish...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062629/ https://www.ncbi.nlm.nih.gov/pubmed/36996130 http://dx.doi.org/10.1371/journal.pone.0283574 |