Cargando…
Distributionally robust learning-to-rank under the Wasserstein metric
Despite their satisfactory performance, most existing listwise Learning-To-Rank (LTR) models do not consider the crucial issue of robustness. A data set can be contaminated in various ways, including human error in labeling or annotation, distributional data shift, and malicious adversaries who wish...
Autores principales: | Sotudian, Shahabeddin, Chen, Ruidi, Paschalidis, Ioannis Ch. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062629/ https://www.ncbi.nlm.nih.gov/pubmed/36996130 http://dx.doi.org/10.1371/journal.pone.0283574 |
Ejemplares similares
-
A Robust Learning Approach for Regression Models Based on Distributionally Robust Optimization
por: Chen, Ruidi, et al.
Publicado: (2018) -
Improved cluster ranking in protein–protein docking using a regression approach
por: Sotudian, Shahabeddin, et al.
Publicado: (2021) -
Distributionally robust mean-absolute deviation portfolio optimization using wasserstein metric
por: Chen, Dali, et al.
Publicado: (2022) -
Sensitivity analysis of Wasserstein distributionally robust optimization problems
por: Bartl, Daniel, et al.
Publicado: (2021) -
Social determinants of health and the prediction of missed breast imaging appointments
por: Sotudian, Shahabeddin, et al.
Publicado: (2022)