Cargando…

The gut signals to AGRP-expressing cells of the pituitary to control glucose homeostasis

Glucose homeostasis can be improved after bariatric surgery, which alters bile flow and stimulates gut hormone secretion, particularly FGF15/19. FGFR1 expression in AGRP-expressing cells is required for bile acids’ ability to improve glucose control. We show that the mouse Agrp gene has 3 promoter/e...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Shun-Mei, Ifebi, Bruno, Johnson, Fred, Xu, Alison, Ho, Jacquelin, Yang, Yunlei, Schwartz, Gary, Jo, Young Hwan, Chua, Streamson
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065075/
https://www.ncbi.nlm.nih.gov/pubmed/36787185
http://dx.doi.org/10.1172/JCI164185
Descripción
Sumario:Glucose homeostasis can be improved after bariatric surgery, which alters bile flow and stimulates gut hormone secretion, particularly FGF15/19. FGFR1 expression in AGRP-expressing cells is required for bile acids’ ability to improve glucose control. We show that the mouse Agrp gene has 3 promoter/enhancer regions that direct transcription of each of their own AGRP transcripts. One of these Agrp promoters/enhancers, Agrp-B, is regulated by bile acids. We generated an Agrp-B knockin FLP/knockout allele. AGRP-B–expressing cells are found in endocrine cells of the pars tuberalis and coexpress diacylglycerol lipase B — an endocannabinoid biosynthetic enzyme — distinct from pars tuberalis thyrotropes. AGRP-B expression is also found in the folliculostellate cells of the pituitary’s anterior lobe. Mice without AGRP-B were protected from glucose intolerance induced by high-fat feeding but not from excess weight gain. Chemogenetic inhibition of AGRP-B cells improved glucose tolerance by enhancing glucose-stimulated insulin secretion. Inhibition of the AGRP-B cells also caused weight loss. The improved glucose tolerance and reduced body weight persisted up to 6 weeks after cessation of the DREADD-mediated inhibition, suggesting the presence of a biological switch for glucose homeostasis that is regulated by long-term stability of food availability.