Cargando…
Antimicrobial peptides CS-piscidin-induced cell death involves activation of RIPK1/PARP, and modification with myristic acid enhances its stability and tumor-targeting capability
Ovarian cancer (OC) is a highly lethal gynecological malignancy, often diagnosed at advanced stages with limited treatment options. Here, we demonstrate that the antimicrobial peptide CS-piscidin significantly inhibits OC cell proliferation, colony formation, and induces cell death. Mechanistically,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10066050/ https://www.ncbi.nlm.nih.gov/pubmed/37000327 http://dx.doi.org/10.1007/s12672-023-00642-1 |
Sumario: | Ovarian cancer (OC) is a highly lethal gynecological malignancy, often diagnosed at advanced stages with limited treatment options. Here, we demonstrate that the antimicrobial peptide CS-piscidin significantly inhibits OC cell proliferation, colony formation, and induces cell death. Mechanistically, CS-piscidin causes cell necrosis by compromising the cell membrane. Furthermore, CS-piscidin can activate Receptor-interacting protein kinase 1 (RIPK1) and induce cell apoptosis by cleavage of PARP. To improve tumor targeting ability, we modified CS-piscidin by adding a short cyclic peptide, cyclo-RGDfk, to the C-terminus (CS-RGD) and a myristate to the N-terminus (Myr-CS-RGD). Our results show that while CS-RGD exhibits stronger anti-cancer activity than CS-piscidin, it also causes increased cytotoxicity. In contrast, Myr-CS-RGD significantly improves drug specificity by reducing CS-RGD toxicity in normal cells while retaining comparable antitumor activity by increasing peptide stability. In a syngeneic mouse tumor model, Myr-CS-RGD demonstrated superior anti-tumor activity compared to CS-piscidin and CS-RGD. Our findings suggest that CS-piscidin can suppress ovarian cancer via multiple cell death forms and that myristoylation modification is a promising strategy to enhance anti-cancer peptide performance. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12672-023-00642-1. |
---|