Cargando…

DAB2 promotes pulmonary fibrosis and may act as an intermediate between IGF‑1R and PI3K/AKT signaling pathways

Idiopathic pulmonary fibrosis (IPF) is a heterogeneous lung disease associated with high mortality. Disabled-2 (DAB2), an adapter protein, regulates cell-fibrinogen adhesion and fibrinogen uptake. DAB2 is differentially expressed in mouse fibrotic lungs induced by bleomycin according to a genome mic...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Chun-Lian, Li, Xiu-Li, Quan, Xiao-Juan, Zhang, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067542/
https://www.ncbi.nlm.nih.gov/pubmed/37021069
http://dx.doi.org/10.3892/etm.2023.11882
Descripción
Sumario:Idiopathic pulmonary fibrosis (IPF) is a heterogeneous lung disease associated with high mortality. Disabled-2 (DAB2), an adapter protein, regulates cell-fibrinogen adhesion and fibrinogen uptake. DAB2 is differentially expressed in mouse fibrotic lungs induced by bleomycin according to a genome microarray analysis based on Gene Expression Omnibus database. However, the role of DAB2 in IPF has not been revealed. A bleomycin-induced mouse model of pulmonary fibrosis was constructed in the present study. It found that the expression of DAB2 was upregulated in bleomycin-induced fibrotic lung tissue with collagen fiber deposition and pulmonary interstitium thickening. Colocalization of DAB2 with α-smooth muscle actin (SMA) was observed in lung tissue sections. In vitro, human lung fibroblast MRC-5 cells were treated with TGF-β1 and the expression of DAB2 was increased. Knockdown of DAB2 suppressed cell proliferation and the expression of α-SMA, collagen I, collagen IV and fibronectin in TGF-β1-treated MRC-5 cells. The phosphorylation levels of PI3K and AKT were suppressed in DAB2-knockdown cells. IGF-1/IGF-1R has been reported to promote pulmonary fibrosis and activate the PI3K/Akt signaling. In the present study, the activation of IGF-1/IGF-1R signaling pathways in bleomycin-induced fibrotic lung tissues were positively associated with DAB2 expression. The phosphorylation level of IGF-1R was increased in MRC-5 cells with TGF-β1 treatment, and DAB2 expression was decreased by silencing of IGF-1R. This suggested that DAB2 might be a downstream target of the IGF-1R pathway and thus induced PI3K/AKT signaling activation and fibrogenesis. The current study demonstrated the importance of DAB2 in pulmonary fibrosis and suggested the potential of IGF-1R/DAB2/PI3K in the pathogenesis of IPF.