Cargando…
Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus
The human infectious disease COVID-19 caused by the SARS-CoV-2 virus has become a major threat to global public health. Developing a vaccine is the preferred prophylactic response to epidemics and pandemics. However, for individuals who have contracted the disease, the rapid design of antibodies tha...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069166/ https://www.ncbi.nlm.nih.gov/pubmed/37035348 http://dx.doi.org/10.1016/j.heliyon.2023.e15032 |
_version_ | 1785018802126192640 |
---|---|
author | Hernandez, Nancy E. Jankowski, Wojciech Frick, Rahel Kelow, Simon P. Lubin, Joseph H. Simhadri, Vijaya Adolf-Bryfogle, Jared Khare, Sagar D. Dunbrack, Roland L. Gray, Jeffrey J. Sauna, Zuben E. |
author_facet | Hernandez, Nancy E. Jankowski, Wojciech Frick, Rahel Kelow, Simon P. Lubin, Joseph H. Simhadri, Vijaya Adolf-Bryfogle, Jared Khare, Sagar D. Dunbrack, Roland L. Gray, Jeffrey J. Sauna, Zuben E. |
author_sort | Hernandez, Nancy E. |
collection | PubMed |
description | The human infectious disease COVID-19 caused by the SARS-CoV-2 virus has become a major threat to global public health. Developing a vaccine is the preferred prophylactic response to epidemics and pandemics. However, for individuals who have contracted the disease, the rapid design of antibodies that can target the SARS-CoV-2 virus fulfils a critical need. Further, discovering antibodies that bind multiple variants of SARS-CoV-2 can aid in the development of rapid antigen tests (RATs) which are critical for the identification and isolation of individuals currently carrying COVID-19. Here we provide a proof-of-concept study for the computational design of high-affinity antibodies that bind to multiple variants of the SARS-CoV-2 spike protein using RosettaAntibodyDesign (RAbD). Well characterized antibodies that bind with high affinity to the SARS-CoV-1 (but not SARS-CoV-2) spike protein were used as templates and re-designed to bind the SARS-CoV-2 spike protein with high affinity, resulting in a specificity switch. A panel of designed antibodies were experimentally validated. One design bound to a broad range of variants of concern including the Omicron, Delta, Wuhan, and South African spike protein variants. |
format | Online Article Text |
id | pubmed-10069166 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-100691662023-04-03 Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus Hernandez, Nancy E. Jankowski, Wojciech Frick, Rahel Kelow, Simon P. Lubin, Joseph H. Simhadri, Vijaya Adolf-Bryfogle, Jared Khare, Sagar D. Dunbrack, Roland L. Gray, Jeffrey J. Sauna, Zuben E. Heliyon Research Article The human infectious disease COVID-19 caused by the SARS-CoV-2 virus has become a major threat to global public health. Developing a vaccine is the preferred prophylactic response to epidemics and pandemics. However, for individuals who have contracted the disease, the rapid design of antibodies that can target the SARS-CoV-2 virus fulfils a critical need. Further, discovering antibodies that bind multiple variants of SARS-CoV-2 can aid in the development of rapid antigen tests (RATs) which are critical for the identification and isolation of individuals currently carrying COVID-19. Here we provide a proof-of-concept study for the computational design of high-affinity antibodies that bind to multiple variants of the SARS-CoV-2 spike protein using RosettaAntibodyDesign (RAbD). Well characterized antibodies that bind with high affinity to the SARS-CoV-1 (but not SARS-CoV-2) spike protein were used as templates and re-designed to bind the SARS-CoV-2 spike protein with high affinity, resulting in a specificity switch. A panel of designed antibodies were experimentally validated. One design bound to a broad range of variants of concern including the Omicron, Delta, Wuhan, and South African spike protein variants. Elsevier 2023-04-03 /pmc/articles/PMC10069166/ /pubmed/37035348 http://dx.doi.org/10.1016/j.heliyon.2023.e15032 Text en © 2023 The Authors |
spellingShingle | Research Article Hernandez, Nancy E. Jankowski, Wojciech Frick, Rahel Kelow, Simon P. Lubin, Joseph H. Simhadri, Vijaya Adolf-Bryfogle, Jared Khare, Sagar D. Dunbrack, Roland L. Gray, Jeffrey J. Sauna, Zuben E. Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus |
title | Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus |
title_full | Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus |
title_fullStr | Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus |
title_full_unstemmed | Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus |
title_short | Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus |
title_sort | computational design of nanomolar-binding antibodies specific to multiple sars-cov-2 variants by engineering a specificity switch of antibody 80r using rosettaantibodydesign (rabd) results in potential generalizable therapeutic antibodies for novel sars-cov-2 virus |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069166/ https://www.ncbi.nlm.nih.gov/pubmed/37035348 http://dx.doi.org/10.1016/j.heliyon.2023.e15032 |
work_keys_str_mv | AT hernandeznancye computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus AT jankowskiwojciech computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus AT frickrahel computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus AT kelowsimonp computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus AT lubinjosephh computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus AT simhadrivijaya computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus AT adolfbryfoglejared computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus AT kharesagard computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus AT dunbrackrolandl computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus AT grayjeffreyj computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus AT saunazubene computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus |