Cargando…

Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus

The human infectious disease COVID-19 caused by the SARS-CoV-2 virus has become a major threat to global public health. Developing a vaccine is the preferred prophylactic response to epidemics and pandemics. However, for individuals who have contracted the disease, the rapid design of antibodies tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Hernandez, Nancy E., Jankowski, Wojciech, Frick, Rahel, Kelow, Simon P., Lubin, Joseph H., Simhadri, Vijaya, Adolf-Bryfogle, Jared, Khare, Sagar D., Dunbrack, Roland L., Gray, Jeffrey J., Sauna, Zuben E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069166/
https://www.ncbi.nlm.nih.gov/pubmed/37035348
http://dx.doi.org/10.1016/j.heliyon.2023.e15032
_version_ 1785018802126192640
author Hernandez, Nancy E.
Jankowski, Wojciech
Frick, Rahel
Kelow, Simon P.
Lubin, Joseph H.
Simhadri, Vijaya
Adolf-Bryfogle, Jared
Khare, Sagar D.
Dunbrack, Roland L.
Gray, Jeffrey J.
Sauna, Zuben E.
author_facet Hernandez, Nancy E.
Jankowski, Wojciech
Frick, Rahel
Kelow, Simon P.
Lubin, Joseph H.
Simhadri, Vijaya
Adolf-Bryfogle, Jared
Khare, Sagar D.
Dunbrack, Roland L.
Gray, Jeffrey J.
Sauna, Zuben E.
author_sort Hernandez, Nancy E.
collection PubMed
description The human infectious disease COVID-19 caused by the SARS-CoV-2 virus has become a major threat to global public health. Developing a vaccine is the preferred prophylactic response to epidemics and pandemics. However, for individuals who have contracted the disease, the rapid design of antibodies that can target the SARS-CoV-2 virus fulfils a critical need. Further, discovering antibodies that bind multiple variants of SARS-CoV-2 can aid in the development of rapid antigen tests (RATs) which are critical for the identification and isolation of individuals currently carrying COVID-19. Here we provide a proof-of-concept study for the computational design of high-affinity antibodies that bind to multiple variants of the SARS-CoV-2 spike protein using RosettaAntibodyDesign (RAbD). Well characterized antibodies that bind with high affinity to the SARS-CoV-1 (but not SARS-CoV-2) spike protein were used as templates and re-designed to bind the SARS-CoV-2 spike protein with high affinity, resulting in a specificity switch. A panel of designed antibodies were experimentally validated. One design bound to a broad range of variants of concern including the Omicron, Delta, Wuhan, and South African spike protein variants.
format Online
Article
Text
id pubmed-10069166
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-100691662023-04-03 Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus Hernandez, Nancy E. Jankowski, Wojciech Frick, Rahel Kelow, Simon P. Lubin, Joseph H. Simhadri, Vijaya Adolf-Bryfogle, Jared Khare, Sagar D. Dunbrack, Roland L. Gray, Jeffrey J. Sauna, Zuben E. Heliyon Research Article The human infectious disease COVID-19 caused by the SARS-CoV-2 virus has become a major threat to global public health. Developing a vaccine is the preferred prophylactic response to epidemics and pandemics. However, for individuals who have contracted the disease, the rapid design of antibodies that can target the SARS-CoV-2 virus fulfils a critical need. Further, discovering antibodies that bind multiple variants of SARS-CoV-2 can aid in the development of rapid antigen tests (RATs) which are critical for the identification and isolation of individuals currently carrying COVID-19. Here we provide a proof-of-concept study for the computational design of high-affinity antibodies that bind to multiple variants of the SARS-CoV-2 spike protein using RosettaAntibodyDesign (RAbD). Well characterized antibodies that bind with high affinity to the SARS-CoV-1 (but not SARS-CoV-2) spike protein were used as templates and re-designed to bind the SARS-CoV-2 spike protein with high affinity, resulting in a specificity switch. A panel of designed antibodies were experimentally validated. One design bound to a broad range of variants of concern including the Omicron, Delta, Wuhan, and South African spike protein variants. Elsevier 2023-04-03 /pmc/articles/PMC10069166/ /pubmed/37035348 http://dx.doi.org/10.1016/j.heliyon.2023.e15032 Text en © 2023 The Authors
spellingShingle Research Article
Hernandez, Nancy E.
Jankowski, Wojciech
Frick, Rahel
Kelow, Simon P.
Lubin, Joseph H.
Simhadri, Vijaya
Adolf-Bryfogle, Jared
Khare, Sagar D.
Dunbrack, Roland L.
Gray, Jeffrey J.
Sauna, Zuben E.
Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus
title Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus
title_full Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus
title_fullStr Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus
title_full_unstemmed Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus
title_short Computational design of nanomolar-binding antibodies specific to multiple SARS-CoV-2 variants by engineering a specificity switch of antibody 80R using RosettaAntibodyDesign (RAbD) results in potential generalizable therapeutic antibodies for novel SARS-CoV-2 virus
title_sort computational design of nanomolar-binding antibodies specific to multiple sars-cov-2 variants by engineering a specificity switch of antibody 80r using rosettaantibodydesign (rabd) results in potential generalizable therapeutic antibodies for novel sars-cov-2 virus
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069166/
https://www.ncbi.nlm.nih.gov/pubmed/37035348
http://dx.doi.org/10.1016/j.heliyon.2023.e15032
work_keys_str_mv AT hernandeznancye computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus
AT jankowskiwojciech computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus
AT frickrahel computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus
AT kelowsimonp computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus
AT lubinjosephh computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus
AT simhadrivijaya computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus
AT adolfbryfoglejared computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus
AT kharesagard computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus
AT dunbrackrolandl computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus
AT grayjeffreyj computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus
AT saunazubene computationaldesignofnanomolarbindingantibodiesspecifictomultiplesarscov2variantsbyengineeringaspecificityswitchofantibody80rusingrosettaantibodydesignrabdresultsinpotentialgeneralizabletherapeuticantibodiesfornovelsarscov2virus