Cargando…
Computational speed-up of large-scale, single-cell model simulations via a fully integrated SBML-based format
SUMMARY: Large-scale and whole-cell modeling has multiple challenges, including scalable model building and module communication bottlenecks (e.g. between metabolism, gene expression, signaling, etc.). We previously developed an open-source, scalable format for a large-scale mechanistic model of pro...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070034/ https://www.ncbi.nlm.nih.gov/pubmed/37020976 http://dx.doi.org/10.1093/bioadv/vbad039 |
Sumario: | SUMMARY: Large-scale and whole-cell modeling has multiple challenges, including scalable model building and module communication bottlenecks (e.g. between metabolism, gene expression, signaling, etc.). We previously developed an open-source, scalable format for a large-scale mechanistic model of proliferation and death signaling dynamics, but communication bottlenecks between gene expression and protein biochemistry modules remained. Here, we developed two solutions to communication bottlenecks that speed-up simulation by ∼4-fold for hybrid stochastic-deterministic simulations and by over 100-fold for fully deterministic simulations. Fully deterministic speed-up facilitates model initialization, parameter estimation and sensitivity analysis tasks. AVAILABILITY AND IMPLEMENTATION: Source code is freely available at https://github.com/birtwistlelab/SPARCED/releases/tag/v1.3.0 implemented in python, and supported on Linux, Windows and MacOS (via Docker). |
---|