Cargando…
PARP1 negatively regulates MAPK signaling by impairing BRAF-X1 translation
In human cells BRAF oncogene is invariably expressed as a mix of two coding transcripts: BRAF-ref and BRAF-X1. These two mRNA isoforms, remarkably different in the sequence and length of their 3′UTRs, are potentially involved in distinct post-transcriptional regulatory circuits. Herein, we identify...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071733/ https://www.ncbi.nlm.nih.gov/pubmed/37013641 http://dx.doi.org/10.1186/s13045-023-01428-2 |
Sumario: | In human cells BRAF oncogene is invariably expressed as a mix of two coding transcripts: BRAF-ref and BRAF-X1. These two mRNA isoforms, remarkably different in the sequence and length of their 3′UTRs, are potentially involved in distinct post-transcriptional regulatory circuits. Herein, we identify PARP1 among the mRNA Binding Proteins that specifically target the X1 3′UTR in melanoma cells. Mechanistically, PARP1 Zinc Finger domain down-regulates BRAF expression at the translational level. As a consequence, it exerts a negative impact on MAPK pathway, and sensitizes melanoma cells to BRAF and MEK inhibitors, both in vitro and in vivo. In summary, our study unveils PARP1 as a negative regulator of the highly oncogenic MAPK pathway in melanoma, through the modulation of BRAF-X1 expression. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13045-023-01428-2. |
---|