Cargando…

Helicobacter pylori-induced aberrant demethylation and expression of GNB4 promotes gastric carcinogenesis via the Hippo–YAP1 pathway

BACKGROUND: Helicobacter pylori (H. pylori) infection causes aberrant DNA methylation and contributes to the risk of gastric cancer (GC). Guanine nucleotide-binding protein subunit beta-4 (GNB4) is involved in various tumorigenic processes. We found an aberrant methylation level of GNB4 in H. pylori...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Duanrui, Liu, Yunyun, Zhu, Wenshuai, Lu, Yi, Zhu, Jingyu, Ma, Xiaoli, Xing, Yuanxin, Yuan, Mingjie, Ning, Bin, Wang, Yunshan, Jia, Yanfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073623/
https://www.ncbi.nlm.nih.gov/pubmed/37016382
http://dx.doi.org/10.1186/s12916-023-02842-6
Descripción
Sumario:BACKGROUND: Helicobacter pylori (H. pylori) infection causes aberrant DNA methylation and contributes to the risk of gastric cancer (GC). Guanine nucleotide-binding protein subunit beta-4 (GNB4) is involved in various tumorigenic processes. We found an aberrant methylation level of GNB4 in H. pylori-induced GC in our previous bioinformatic analysis; however, its expression and underlying molecular mechanisms are poorly understood. METHODS: The expression, underlying signaling pathways, and clinical significance of GNB4 were analyzed in a local cohort of 107 patients with GC and several public databases. H. pylori infection was induced in in vitro and in vivo models. Methylation-specific PCR, pyrosequencing, and mass spectrometry analysis were used to detect changes in methylation levels. GNB4, TET1, and YAP1 were overexpressed or knocked down in GC cell lines. We performed gain- and loss-of-function experiments, including CCK-8, EdU, colony formation, transwell migration, and invasion assays. Nude mice were injected with genetically manipulated GC cells, and the growth of xenograft tumors and metastases was measured. Real-time quantitative PCR, western blotting, immunofluorescence, immunohistochemistry, chromatin immunoprecipitation, and co-immunoprecipitation experiments were performed to elucidate the underlying molecular mechanisms. RESULTS: GNB4 expression was significantly upregulated in GC and correlated with aggressive clinical characteristics and poor prognosis. Increased levels of GNB4 were associated with shorter survival times. Infection with H. pylori strains 26695 and SS1 induced GNB4 mRNA and protein expression in GC cell lines and mice. Additionally, silencing of GNB4 blocked the pro-proliferative, metastatic, and invasive ability of H. pylori in GC cells. H. pylori infection remarkably decreased the methylation level of the GNB4 promoter region, particularly at the CpG#5 site (chr3:179451746–179451745). H. pylori infection upregulated TET1 expression via activation of the NF-κB. TET binds to the GNB4 promoter region which undergoes demethylation modification. Functionally, we identified that GNB4 induced oncogenic behaviors of tumors via the Hippo–YAP1 pathway in both in vitro and in vivo models. CONCLUSIONS: Our findings demonstrate that H. pylori infection activates the NF-κB-TET1-GNB4 demethylation-YAP1 axis, which may be a potential therapeutic target for GC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-023-02842-6.