Cargando…

Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics

Transparent field‐effect transistors (FETs) are attacking intensive interest for constructing fancy “invisible” electronic products. Presently, the main technology for realizing transparent FETs is based on metal oxide semiconductors, which have wide‐bandgap but generally demand sputtering technique...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Jiangnan, Qiu, Xincan, Liu, Yu, Chen, Ping‐An, Guo, Jing, Wei, Huan, Ding, Jiaqi, Xie, Haihong, Lv, Yawei, Li, Fuxiang, Li, Wenwu, Liao, Lei, Hu, Yuanyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074105/
https://www.ncbi.nlm.nih.gov/pubmed/36703612
http://dx.doi.org/10.1002/advs.202300133
_version_ 1785019706102513664
author Xia, Jiangnan
Qiu, Xincan
Liu, Yu
Chen, Ping‐An
Guo, Jing
Wei, Huan
Ding, Jiaqi
Xie, Haihong
Lv, Yawei
Li, Fuxiang
Li, Wenwu
Liao, Lei
Hu, Yuanyuan
author_facet Xia, Jiangnan
Qiu, Xincan
Liu, Yu
Chen, Ping‐An
Guo, Jing
Wei, Huan
Ding, Jiaqi
Xie, Haihong
Lv, Yawei
Li, Fuxiang
Li, Wenwu
Liao, Lei
Hu, Yuanyuan
author_sort Xia, Jiangnan
collection PubMed
description Transparent field‐effect transistors (FETs) are attacking intensive interest for constructing fancy “invisible” electronic products. Presently, the main technology for realizing transparent FETs is based on metal oxide semiconductors, which have wide‐bandgap but generally demand sputtering technique or high‐temperature (>350 °C) solution process for fabrication. Herein, a general device fabrication strategy for metal halide perovskite (MHP) FETs is shown, by which transparent perovskite FETs are successfully obtained using low‐temperature (<150 °C) solution process. This strategy involves the employment of ferroelectric copolymer poly(vinylidene fluoride‐co‐trifluoroethylene) (PVDF‐TrFE) as the dielectric, which conquers the challenging issue of gate‐electric‐field screening effect in MHP FETs. Additionally, an ultra‐thin SnO(2) is inserted between the source/drain electrodes and MHPs to facilitate electron injection. Consequently, n‐type semi‐transparent MAPbBr(3) FETs and fully transparent MAPbCl(3) FETs which can operate well at room temperature with mobility over 10(−3) cm(2) V(−1) s(−1) and on/off ratio >10(3) are achieved for the first time. The low‐temperature solution processability of these FETs makes them particularly attractive for applications in low‐cost, large‐area transparent electronics.
format Online
Article
Text
id pubmed-10074105
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-100741052023-04-06 Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics Xia, Jiangnan Qiu, Xincan Liu, Yu Chen, Ping‐An Guo, Jing Wei, Huan Ding, Jiaqi Xie, Haihong Lv, Yawei Li, Fuxiang Li, Wenwu Liao, Lei Hu, Yuanyuan Adv Sci (Weinh) Research Articles Transparent field‐effect transistors (FETs) are attacking intensive interest for constructing fancy “invisible” electronic products. Presently, the main technology for realizing transparent FETs is based on metal oxide semiconductors, which have wide‐bandgap but generally demand sputtering technique or high‐temperature (>350 °C) solution process for fabrication. Herein, a general device fabrication strategy for metal halide perovskite (MHP) FETs is shown, by which transparent perovskite FETs are successfully obtained using low‐temperature (<150 °C) solution process. This strategy involves the employment of ferroelectric copolymer poly(vinylidene fluoride‐co‐trifluoroethylene) (PVDF‐TrFE) as the dielectric, which conquers the challenging issue of gate‐electric‐field screening effect in MHP FETs. Additionally, an ultra‐thin SnO(2) is inserted between the source/drain electrodes and MHPs to facilitate electron injection. Consequently, n‐type semi‐transparent MAPbBr(3) FETs and fully transparent MAPbCl(3) FETs which can operate well at room temperature with mobility over 10(−3) cm(2) V(−1) s(−1) and on/off ratio >10(3) are achieved for the first time. The low‐temperature solution processability of these FETs makes them particularly attractive for applications in low‐cost, large‐area transparent electronics. John Wiley and Sons Inc. 2023-01-26 /pmc/articles/PMC10074105/ /pubmed/36703612 http://dx.doi.org/10.1002/advs.202300133 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Xia, Jiangnan
Qiu, Xincan
Liu, Yu
Chen, Ping‐An
Guo, Jing
Wei, Huan
Ding, Jiaqi
Xie, Haihong
Lv, Yawei
Li, Fuxiang
Li, Wenwu
Liao, Lei
Hu, Yuanyuan
Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics
title Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics
title_full Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics
title_fullStr Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics
title_full_unstemmed Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics
title_short Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics
title_sort ferroelectric wide‐bandgap metal halide perovskite field‐effect transistors: toward transparent electronics
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074105/
https://www.ncbi.nlm.nih.gov/pubmed/36703612
http://dx.doi.org/10.1002/advs.202300133
work_keys_str_mv AT xiajiangnan ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics
AT qiuxincan ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics
AT liuyu ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics
AT chenpingan ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics
AT guojing ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics
AT weihuan ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics
AT dingjiaqi ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics
AT xiehaihong ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics
AT lvyawei ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics
AT lifuxiang ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics
AT liwenwu ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics
AT liaolei ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics
AT huyuanyuan ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics