Cargando…
Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics
Transparent field‐effect transistors (FETs) are attacking intensive interest for constructing fancy “invisible” electronic products. Presently, the main technology for realizing transparent FETs is based on metal oxide semiconductors, which have wide‐bandgap but generally demand sputtering technique...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074105/ https://www.ncbi.nlm.nih.gov/pubmed/36703612 http://dx.doi.org/10.1002/advs.202300133 |
_version_ | 1785019706102513664 |
---|---|
author | Xia, Jiangnan Qiu, Xincan Liu, Yu Chen, Ping‐An Guo, Jing Wei, Huan Ding, Jiaqi Xie, Haihong Lv, Yawei Li, Fuxiang Li, Wenwu Liao, Lei Hu, Yuanyuan |
author_facet | Xia, Jiangnan Qiu, Xincan Liu, Yu Chen, Ping‐An Guo, Jing Wei, Huan Ding, Jiaqi Xie, Haihong Lv, Yawei Li, Fuxiang Li, Wenwu Liao, Lei Hu, Yuanyuan |
author_sort | Xia, Jiangnan |
collection | PubMed |
description | Transparent field‐effect transistors (FETs) are attacking intensive interest for constructing fancy “invisible” electronic products. Presently, the main technology for realizing transparent FETs is based on metal oxide semiconductors, which have wide‐bandgap but generally demand sputtering technique or high‐temperature (>350 °C) solution process for fabrication. Herein, a general device fabrication strategy for metal halide perovskite (MHP) FETs is shown, by which transparent perovskite FETs are successfully obtained using low‐temperature (<150 °C) solution process. This strategy involves the employment of ferroelectric copolymer poly(vinylidene fluoride‐co‐trifluoroethylene) (PVDF‐TrFE) as the dielectric, which conquers the challenging issue of gate‐electric‐field screening effect in MHP FETs. Additionally, an ultra‐thin SnO(2) is inserted between the source/drain electrodes and MHPs to facilitate electron injection. Consequently, n‐type semi‐transparent MAPbBr(3) FETs and fully transparent MAPbCl(3) FETs which can operate well at room temperature with mobility over 10(−3) cm(2) V(−1) s(−1) and on/off ratio >10(3) are achieved for the first time. The low‐temperature solution processability of these FETs makes them particularly attractive for applications in low‐cost, large‐area transparent electronics. |
format | Online Article Text |
id | pubmed-10074105 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100741052023-04-06 Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics Xia, Jiangnan Qiu, Xincan Liu, Yu Chen, Ping‐An Guo, Jing Wei, Huan Ding, Jiaqi Xie, Haihong Lv, Yawei Li, Fuxiang Li, Wenwu Liao, Lei Hu, Yuanyuan Adv Sci (Weinh) Research Articles Transparent field‐effect transistors (FETs) are attacking intensive interest for constructing fancy “invisible” electronic products. Presently, the main technology for realizing transparent FETs is based on metal oxide semiconductors, which have wide‐bandgap but generally demand sputtering technique or high‐temperature (>350 °C) solution process for fabrication. Herein, a general device fabrication strategy for metal halide perovskite (MHP) FETs is shown, by which transparent perovskite FETs are successfully obtained using low‐temperature (<150 °C) solution process. This strategy involves the employment of ferroelectric copolymer poly(vinylidene fluoride‐co‐trifluoroethylene) (PVDF‐TrFE) as the dielectric, which conquers the challenging issue of gate‐electric‐field screening effect in MHP FETs. Additionally, an ultra‐thin SnO(2) is inserted between the source/drain electrodes and MHPs to facilitate electron injection. Consequently, n‐type semi‐transparent MAPbBr(3) FETs and fully transparent MAPbCl(3) FETs which can operate well at room temperature with mobility over 10(−3) cm(2) V(−1) s(−1) and on/off ratio >10(3) are achieved for the first time. The low‐temperature solution processability of these FETs makes them particularly attractive for applications in low‐cost, large‐area transparent electronics. John Wiley and Sons Inc. 2023-01-26 /pmc/articles/PMC10074105/ /pubmed/36703612 http://dx.doi.org/10.1002/advs.202300133 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Xia, Jiangnan Qiu, Xincan Liu, Yu Chen, Ping‐An Guo, Jing Wei, Huan Ding, Jiaqi Xie, Haihong Lv, Yawei Li, Fuxiang Li, Wenwu Liao, Lei Hu, Yuanyuan Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics |
title | Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics |
title_full | Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics |
title_fullStr | Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics |
title_full_unstemmed | Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics |
title_short | Ferroelectric Wide‐Bandgap Metal Halide Perovskite Field‐Effect Transistors: Toward Transparent Electronics |
title_sort | ferroelectric wide‐bandgap metal halide perovskite field‐effect transistors: toward transparent electronics |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074105/ https://www.ncbi.nlm.nih.gov/pubmed/36703612 http://dx.doi.org/10.1002/advs.202300133 |
work_keys_str_mv | AT xiajiangnan ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics AT qiuxincan ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics AT liuyu ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics AT chenpingan ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics AT guojing ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics AT weihuan ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics AT dingjiaqi ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics AT xiehaihong ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics AT lvyawei ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics AT lifuxiang ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics AT liwenwu ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics AT liaolei ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics AT huyuanyuan ferroelectricwidebandgapmetalhalideperovskitefieldeffecttransistorstowardtransparentelectronics |