Cargando…
Depth profiling and standardization from the back side of a sample for accurate analyses: Emphasis on quantifying low‐fluence, shallow implants in diamond‐like carbon
RATIONALE: Back‐side thinning of wafers is used to eliminate issues with transient sputtering when analyzing near‐surface element distributions. Precise and accurate calibrated implants are created by including a standard reference material during the implantation. Combining these methods allows acc...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078471/ https://www.ncbi.nlm.nih.gov/pubmed/36477973 http://dx.doi.org/10.1002/rcm.9454 |
_version_ | 1785020526951923712 |
---|---|
author | Rieck, Karen D. Jurewicz, Amy J. G. Hervig, Richard L. Williams, Peter Olinger, Chad T. Wiens, Roger C. Ogliore, Ryan C. |
author_facet | Rieck, Karen D. Jurewicz, Amy J. G. Hervig, Richard L. Williams, Peter Olinger, Chad T. Wiens, Roger C. Ogliore, Ryan C. |
author_sort | Rieck, Karen D. |
collection | PubMed |
description | RATIONALE: Back‐side thinning of wafers is used to eliminate issues with transient sputtering when analyzing near‐surface element distributions. Precise and accurate calibrated implants are created by including a standard reference material during the implantation. Combining these methods allows accurate analysis of low‐fluence, shallow features even if matrix effects are a concern. METHODS: Implanted Na (<2.0 × 10(11) ions/cm(2), peaking <50 nm) in diamond‐like carbon (DLC) film on silicon (solar wind returned by NASA's Genesis mission) was prepared for measurement as follows. Implanted surfaces of samples were epoxied to wafers and back‐side‐thinned using physical or chemical methods. Thinned samples were then implanted with reference ions for accurate quantification of the solar wind implant. Analyses used a CAMECA IMS 7f‐GEO SIMS in depth‐profiling mode. RESULTS: Back‐side‐implanted reference ions reduced the need to change sample mounts or stage position and could be spatially separated from the solar wind implant even when measuring monoisotopic ions. Matrix effects in DLC were mitigated and the need to find an identical piece of DLC for a reference implant was eliminated. Accuracy was only limited by the back‐side technique itself. CONCLUSIONS: Combining back‐side depth profiling with back‐side‐implanted internal standards aides quantification of shallow mono‐ and polyisotopic implants. This technique helps mitigate matrix effects and keeps measurement conditions consistent. Depth profile acquisition times are longer, but if sample matrices are homogeneous, procedural changes can decrease measurement times. |
format | Online Article Text |
id | pubmed-10078471 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100784712023-04-07 Depth profiling and standardization from the back side of a sample for accurate analyses: Emphasis on quantifying low‐fluence, shallow implants in diamond‐like carbon Rieck, Karen D. Jurewicz, Amy J. G. Hervig, Richard L. Williams, Peter Olinger, Chad T. Wiens, Roger C. Ogliore, Ryan C. Rapid Commun Mass Spectrom Research Articles RATIONALE: Back‐side thinning of wafers is used to eliminate issues with transient sputtering when analyzing near‐surface element distributions. Precise and accurate calibrated implants are created by including a standard reference material during the implantation. Combining these methods allows accurate analysis of low‐fluence, shallow features even if matrix effects are a concern. METHODS: Implanted Na (<2.0 × 10(11) ions/cm(2), peaking <50 nm) in diamond‐like carbon (DLC) film on silicon (solar wind returned by NASA's Genesis mission) was prepared for measurement as follows. Implanted surfaces of samples were epoxied to wafers and back‐side‐thinned using physical or chemical methods. Thinned samples were then implanted with reference ions for accurate quantification of the solar wind implant. Analyses used a CAMECA IMS 7f‐GEO SIMS in depth‐profiling mode. RESULTS: Back‐side‐implanted reference ions reduced the need to change sample mounts or stage position and could be spatially separated from the solar wind implant even when measuring monoisotopic ions. Matrix effects in DLC were mitigated and the need to find an identical piece of DLC for a reference implant was eliminated. Accuracy was only limited by the back‐side technique itself. CONCLUSIONS: Combining back‐side depth profiling with back‐side‐implanted internal standards aides quantification of shallow mono‐ and polyisotopic implants. This technique helps mitigate matrix effects and keeps measurement conditions consistent. Depth profile acquisition times are longer, but if sample matrices are homogeneous, procedural changes can decrease measurement times. John Wiley and Sons Inc. 2023-01-11 2023-03-30 /pmc/articles/PMC10078471/ /pubmed/36477973 http://dx.doi.org/10.1002/rcm.9454 Text en © 2022 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Rieck, Karen D. Jurewicz, Amy J. G. Hervig, Richard L. Williams, Peter Olinger, Chad T. Wiens, Roger C. Ogliore, Ryan C. Depth profiling and standardization from the back side of a sample for accurate analyses: Emphasis on quantifying low‐fluence, shallow implants in diamond‐like carbon |
title | Depth profiling and standardization from the back side of a sample for accurate analyses: Emphasis on quantifying low‐fluence, shallow implants in diamond‐like carbon |
title_full | Depth profiling and standardization from the back side of a sample for accurate analyses: Emphasis on quantifying low‐fluence, shallow implants in diamond‐like carbon |
title_fullStr | Depth profiling and standardization from the back side of a sample for accurate analyses: Emphasis on quantifying low‐fluence, shallow implants in diamond‐like carbon |
title_full_unstemmed | Depth profiling and standardization from the back side of a sample for accurate analyses: Emphasis on quantifying low‐fluence, shallow implants in diamond‐like carbon |
title_short | Depth profiling and standardization from the back side of a sample for accurate analyses: Emphasis on quantifying low‐fluence, shallow implants in diamond‐like carbon |
title_sort | depth profiling and standardization from the back side of a sample for accurate analyses: emphasis on quantifying low‐fluence, shallow implants in diamond‐like carbon |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078471/ https://www.ncbi.nlm.nih.gov/pubmed/36477973 http://dx.doi.org/10.1002/rcm.9454 |
work_keys_str_mv | AT rieckkarend depthprofilingandstandardizationfromthebacksideofasampleforaccurateanalysesemphasisonquantifyinglowfluenceshallowimplantsindiamondlikecarbon AT jurewiczamyjg depthprofilingandstandardizationfromthebacksideofasampleforaccurateanalysesemphasisonquantifyinglowfluenceshallowimplantsindiamondlikecarbon AT hervigrichardl depthprofilingandstandardizationfromthebacksideofasampleforaccurateanalysesemphasisonquantifyinglowfluenceshallowimplantsindiamondlikecarbon AT williamspeter depthprofilingandstandardizationfromthebacksideofasampleforaccurateanalysesemphasisonquantifyinglowfluenceshallowimplantsindiamondlikecarbon AT olingerchadt depthprofilingandstandardizationfromthebacksideofasampleforaccurateanalysesemphasisonquantifyinglowfluenceshallowimplantsindiamondlikecarbon AT wiensrogerc depthprofilingandstandardizationfromthebacksideofasampleforaccurateanalysesemphasisonquantifyinglowfluenceshallowimplantsindiamondlikecarbon AT oglioreryanc depthprofilingandstandardizationfromthebacksideofasampleforaccurateanalysesemphasisonquantifyinglowfluenceshallowimplantsindiamondlikecarbon |