Cargando…
Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma
BACKGROUND: Extranodal natural killer/T-cell lymphoma (NKTL) is an aggressive type of non-Hodgkin lymphoma with dismal outcome. A better understanding of disease biology and key oncogenic process is necessary for the development of targeted therapy. Super-enhancers (SEs) have been shown to drive piv...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084643/ https://www.ncbi.nlm.nih.gov/pubmed/37032358 http://dx.doi.org/10.1186/s12943-023-01767-1 |
_version_ | 1785021782241050624 |
---|---|
author | Zhou, Jianbiao Toh, Sabrina Hui-Min Tan, Tze King Balan, Kalpnaa Lim, Jing Quan Tan, Tuan Zea Xiong, Sinan Jia, Yunlu Ng, Siok-Bian Peng, Yanfen Jeyasekharan, Anand D. Fan, Shuangyi Lim, Soon Thye Ong, Chin-Ann Johnny Ong, Choon Kiat Sanda, Takaomi Chng, Wee-Joo |
author_facet | Zhou, Jianbiao Toh, Sabrina Hui-Min Tan, Tze King Balan, Kalpnaa Lim, Jing Quan Tan, Tuan Zea Xiong, Sinan Jia, Yunlu Ng, Siok-Bian Peng, Yanfen Jeyasekharan, Anand D. Fan, Shuangyi Lim, Soon Thye Ong, Chin-Ann Johnny Ong, Choon Kiat Sanda, Takaomi Chng, Wee-Joo |
author_sort | Zhou, Jianbiao |
collection | PubMed |
description | BACKGROUND: Extranodal natural killer/T-cell lymphoma (NKTL) is an aggressive type of non-Hodgkin lymphoma with dismal outcome. A better understanding of disease biology and key oncogenic process is necessary for the development of targeted therapy. Super-enhancers (SEs) have been shown to drive pivotal oncogenes in various malignancies. However, the landscape of SEs and SE-associated oncogenes remain elusive in NKTL. METHODS: We used Nano-ChIP-seq of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs NKTL primary tumor samples. Integrative analysis of RNA-seq and survival data further pinned down high value, novel SE oncogenes. We utilized shRNA knockdown, CRISPR-dCas9, luciferase reporter assay, ChIP-PCR to investigate the regulation of transcription factor (TF) on SE oncogenes. Multi-color immunofluorescence (mIF) staining was performed on an independent cohort of clinical samples. Various function experiments were performed to evaluate the effects of TOX2 on the malignancy of NKTL in vitro and in vivo. RESULTS: SE landscape was substantially different in NKTL samples in comparison with normal tonsils. Several SEs at key transcriptional factor (TF) genes, including TOX2, TBX21(T-bet), EOMES, RUNX2, and ID2, were identified. We confirmed that TOX2 was aberrantly overexpressed in NKTL relative to normal NK cells and high expression of TOX2 was associated with worse survival. Modulation of TOX2 expression by shRNA, CRISPR-dCas9 interference of SE function impacted on cell proliferation, survival and colony formation ability of NKTL cells. Mechanistically, we found that RUNX3 regulates TOX2 transcription by binding to the active elements of its SE. Silencing TOX2 also impaired tumor formation of NKTL cells in vivo. Metastasis-associated phosphatase PRL-3 has been identified and validated as a key downstream effector of TOX2-mediated oncogenesis. CONCLUSIONS: Our integrative SE profiling strategy revealed the landscape of SEs, novel targets and insights into molecular pathogenesis of NKTL. The RUNX3-TOX2-SE-TOX2-PRL-3 regulatory pathway may represent a hallmark of NKTL biology. Targeting TOX2 could be a valuable therapeutic intervene for NKTL patients and warrants further study in clinic. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12943-023-01767-1. |
format | Online Article Text |
id | pubmed-10084643 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-100846432023-04-11 Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma Zhou, Jianbiao Toh, Sabrina Hui-Min Tan, Tze King Balan, Kalpnaa Lim, Jing Quan Tan, Tuan Zea Xiong, Sinan Jia, Yunlu Ng, Siok-Bian Peng, Yanfen Jeyasekharan, Anand D. Fan, Shuangyi Lim, Soon Thye Ong, Chin-Ann Johnny Ong, Choon Kiat Sanda, Takaomi Chng, Wee-Joo Mol Cancer Research BACKGROUND: Extranodal natural killer/T-cell lymphoma (NKTL) is an aggressive type of non-Hodgkin lymphoma with dismal outcome. A better understanding of disease biology and key oncogenic process is necessary for the development of targeted therapy. Super-enhancers (SEs) have been shown to drive pivotal oncogenes in various malignancies. However, the landscape of SEs and SE-associated oncogenes remain elusive in NKTL. METHODS: We used Nano-ChIP-seq of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs NKTL primary tumor samples. Integrative analysis of RNA-seq and survival data further pinned down high value, novel SE oncogenes. We utilized shRNA knockdown, CRISPR-dCas9, luciferase reporter assay, ChIP-PCR to investigate the regulation of transcription factor (TF) on SE oncogenes. Multi-color immunofluorescence (mIF) staining was performed on an independent cohort of clinical samples. Various function experiments were performed to evaluate the effects of TOX2 on the malignancy of NKTL in vitro and in vivo. RESULTS: SE landscape was substantially different in NKTL samples in comparison with normal tonsils. Several SEs at key transcriptional factor (TF) genes, including TOX2, TBX21(T-bet), EOMES, RUNX2, and ID2, were identified. We confirmed that TOX2 was aberrantly overexpressed in NKTL relative to normal NK cells and high expression of TOX2 was associated with worse survival. Modulation of TOX2 expression by shRNA, CRISPR-dCas9 interference of SE function impacted on cell proliferation, survival and colony formation ability of NKTL cells. Mechanistically, we found that RUNX3 regulates TOX2 transcription by binding to the active elements of its SE. Silencing TOX2 also impaired tumor formation of NKTL cells in vivo. Metastasis-associated phosphatase PRL-3 has been identified and validated as a key downstream effector of TOX2-mediated oncogenesis. CONCLUSIONS: Our integrative SE profiling strategy revealed the landscape of SEs, novel targets and insights into molecular pathogenesis of NKTL. The RUNX3-TOX2-SE-TOX2-PRL-3 regulatory pathway may represent a hallmark of NKTL biology. Targeting TOX2 could be a valuable therapeutic intervene for NKTL patients and warrants further study in clinic. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12943-023-01767-1. BioMed Central 2023-04-10 /pmc/articles/PMC10084643/ /pubmed/37032358 http://dx.doi.org/10.1186/s12943-023-01767-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Zhou, Jianbiao Toh, Sabrina Hui-Min Tan, Tze King Balan, Kalpnaa Lim, Jing Quan Tan, Tuan Zea Xiong, Sinan Jia, Yunlu Ng, Siok-Bian Peng, Yanfen Jeyasekharan, Anand D. Fan, Shuangyi Lim, Soon Thye Ong, Chin-Ann Johnny Ong, Choon Kiat Sanda, Takaomi Chng, Wee-Joo Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma |
title | Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma |
title_full | Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma |
title_fullStr | Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma |
title_full_unstemmed | Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma |
title_short | Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma |
title_sort | super-enhancer-driven tox2 mediates oncogenesis in natural killer/t cell lymphoma |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084643/ https://www.ncbi.nlm.nih.gov/pubmed/37032358 http://dx.doi.org/10.1186/s12943-023-01767-1 |
work_keys_str_mv | AT zhoujianbiao superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT tohsabrinahuimin superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT tantzeking superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT balankalpnaa superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT limjingquan superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT tantuanzea superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT xiongsinan superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT jiayunlu superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT ngsiokbian superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT pengyanfen superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT jeyasekharananandd superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT fanshuangyi superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT limsoonthye superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT ongchinannjohnny superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT ongchoonkiat superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT sandatakaomi superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma AT chngweejoo superenhancerdriventox2mediatesoncogenesisinnaturalkillertcelllymphoma |