Cargando…
Deep reinforcement learning for turbulent drag reduction in channel flows
We introduce a reinforcement learning (RL) environment to design and benchmark control strategies aimed at reducing drag in turbulent fluid flows enclosed in a channel. The environment provides a framework for computationally efficient, parallelized, high-fidelity fluid simulations, ready to interfa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090012/ https://www.ncbi.nlm.nih.gov/pubmed/37039923 http://dx.doi.org/10.1140/epje/s10189-023-00285-8 |