Cargando…

Deep reinforcement learning for turbulent drag reduction in channel flows

We introduce a reinforcement learning (RL) environment to design and benchmark control strategies aimed at reducing drag in turbulent fluid flows enclosed in a channel. The environment provides a framework for computationally efficient, parallelized, high-fidelity fluid simulations, ready to interfa...

Descripción completa

Detalles Bibliográficos
Autores principales: Guastoni, Luca, Rabault, Jean, Schlatter, Philipp, Azizpour, Hossein, Vinuesa, Ricardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090012/
https://www.ncbi.nlm.nih.gov/pubmed/37039923
http://dx.doi.org/10.1140/epje/s10189-023-00285-8

Ejemplares similares