Cargando…
Deep reinforcement learning for turbulent drag reduction in channel flows
We introduce a reinforcement learning (RL) environment to design and benchmark control strategies aimed at reducing drag in turbulent fluid flows enclosed in a channel. The environment provides a framework for computationally efficient, parallelized, high-fidelity fluid simulations, ready to interfa...
Autores principales: | Guastoni, Luca, Rabault, Jean, Schlatter, Philipp, Azizpour, Hossein, Vinuesa, Ricardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090012/ https://www.ncbi.nlm.nih.gov/pubmed/37039923 http://dx.doi.org/10.1140/epje/s10189-023-00285-8 |
Ejemplares similares
-
Correction to: Deep reinforcement learning for turbulent drag reduction in channel flows
por: Guastoni, Luca, et al.
Publicado: (2023) -
Generative adversarial networks to infer velocity components in rotating turbulent flows
por: Li, Tianyi, et al.
Publicado: (2023) -
Application of superstatistical analysis on fluctuant surface shear in particle-laden turbulence boundary layer
por: Li, Guang, et al.
Publicado: (2022) -
Evolution of channel flow and Darcy’s law beyond the critical Reynolds number
por: Deng, Xiaohui, et al.
Publicado: (2023) -
Inversion of force lines in fiber-reinforced jammed granular material
por: Iliev, Pavel S., et al.
Publicado: (2021)