Cargando…
Removing artefacts and periodically retraining improve performance of neural network-based seizure prediction models
The development of seizure prediction models is often based on long-term scalp electroencephalograms (EEGs) since they capture brain electrical activity, are non-invasive, and come at a relatively low-cost. However, they suffer from major shortcomings. First, long-term EEG is usually highly contamin...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090199/ https://www.ncbi.nlm.nih.gov/pubmed/37041158 http://dx.doi.org/10.1038/s41598-023-30864-w |