Cargando…
Removing artefacts and periodically retraining improve performance of neural network-based seizure prediction models
The development of seizure prediction models is often based on long-term scalp electroencephalograms (EEGs) since they capture brain electrical activity, are non-invasive, and come at a relatively low-cost. However, they suffer from major shortcomings. First, long-term EEG is usually highly contamin...
Autores principales: | Lopes, Fábio, Leal, Adriana, Pinto, Mauro F., Dourado, António, Schulze-Bonhage, Andreas, Dümpelmann, Matthias, Teixeira, César |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090199/ https://www.ncbi.nlm.nih.gov/pubmed/37041158 http://dx.doi.org/10.1038/s41598-023-30864-w |
Ejemplares similares
-
EPIC: Annotated epileptic EEG independent components for artifact reduction
por: Lopes, Fábio, et al.
Publicado: (2022) -
A personalized and evolutionary algorithm for interpretable EEG epilepsy seizure prediction
por: Pinto, Mauro. F., et al.
Publicado: (2021) -
Interpretable EEG seizure prediction using a multiobjective evolutionary algorithm
por: Pinto, Mauro, et al.
Publicado: (2022) -
Cyclical underreporting of seizures in patient‐based seizure documentation
por: Schulze‐Bonhage, Andreas, et al.
Publicado: (2023) -
A Comparison of Machine Learning Classifiers for Energy-Efficient Implementation of Seizure Detection
por: Manzouri, Farrokh, et al.
Publicado: (2018)