Cargando…
Maternal zinc alleviates tert-butyl hydroperoxide-induced mitochondrial oxidative stress on embryonic development involving the activation of Nrf2/PGC-1α pathway
BACKGROUND: Mitochondrial dysfunction induced by excessive mitochondrial reactive oxygen species (ROS) damages embryonic development and leads to growth arrest. OBJECTIVE: The purpose of this study is to elucidate whether maternal zinc (Zn) exert protective effect on oxidative stress targeting mitoc...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091542/ https://www.ncbi.nlm.nih.gov/pubmed/37041604 http://dx.doi.org/10.1186/s40104-023-00852-1 |
Sumario: | BACKGROUND: Mitochondrial dysfunction induced by excessive mitochondrial reactive oxygen species (ROS) damages embryonic development and leads to growth arrest. OBJECTIVE: The purpose of this study is to elucidate whether maternal zinc (Zn) exert protective effect on oxidative stress targeting mitochondrial function using an avian model. RESULT: In ovo injected tert-butyl hydroperoxide (BHP) increases (P < 0.05) hepatic mitochondrial ROS, malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG), and decreases (P < 0.05) mitochondrial membrane potential (MMP), mitochondrial DNA (mtDNA) copy number and adenosine triphosphate (ATP) content, contributing to mitochondrial dysfunction. In vivo and in vitro studies revealed that Zn addition enhances (P < 0.05) ATP synthesis and metallothionein 4 (MT4) content and expression as well as alleviates (P < 0.05) the BHP-induced mitochondrial ROS generation, oxidative damage and dysfunction, exerting a protective effect on mitochondrial function by enhancing antioxidant capacity and upregulating the mRNA and protein expressions of Nrf2 and PGC-1α. CONCLUSIONS: The present study provides a new way to protect offspring against oxidative damage by maternal Zn supplementation through the process of targeting mitochondria involving the activation of Nrf2/PGC-1α signaling. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40104-023-00852-1. |
---|