Cargando…
Effects of Heating Treatment on Functional and Structural Properties of Liquid Whole Egg
Liquid whole egg (LWE) products have many advantages such as convenient transportation, easy production and are safe. However, LWE has a short shelf life and high thermal sensitivity, so suitable heating treatment is the key to the production of LWE products. The aim of this study is to investigate...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094217/ https://www.ncbi.nlm.nih.gov/pubmed/37048294 http://dx.doi.org/10.3390/foods12071474 |
Sumario: | Liquid whole egg (LWE) products have many advantages such as convenient transportation, easy production and are safe. However, LWE has a short shelf life and high thermal sensitivity, so suitable heating treatment is the key to the production of LWE products. The aim of this study is to investigate the effects of heating treatments conditions (at 55–67 °C for 0–10 min) on the emulsification, foaming activity and rheological properties of LWE. The results indicated that the emulsifying activity of LWE had no significant change after 55–64 °C heating treatment, while it decreased significantly after heating treatment at 67 °C. The foaming property of LWE increased significantly after 55 °C to the 64 °C heating treatment; while the foaming property showed a downward trend with the increase in heat treatment temperature, it can significantly improve the foam stability of LWE. The heating treatment thoroughly changed the molecular weight distribution of LWE protein, thus promoted the protein surface hydrophobicity, hydrophobicity activity and rheological properties. The heating treatment at 61 °C for 6 min had a better effect on the functional properties than that of the other heating groups. In addition, the results of this study provide the change in rules of LWE under different heating treatment conditions and provide theoretical guidance for the production and processing of LWE. |
---|