Cargando…

Application of a Novel Quantitative Trait Locus Combination to Improve Grain Shape without Yield Loss in Rice (Oryza sativa L. spp. japonica)

Grain shape is one of the key factors deciding the yield product and the market value as appearance quality in rice (Oryza sativa L.). The grain shape of japonica cultivars in Korea is quite monotonous because the selection pressure of rice breeding programs works in consideration of consumer prefer...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Hyun-Su, Lee, Chang-Min, Baek, Man-Kee, Jeong, O-Young, Kim, Suk-Man
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097285/
https://www.ncbi.nlm.nih.gov/pubmed/37050138
http://dx.doi.org/10.3390/plants12071513
_version_ 1785024543799115776
author Park, Hyun-Su
Lee, Chang-Min
Baek, Man-Kee
Jeong, O-Young
Kim, Suk-Man
author_facet Park, Hyun-Su
Lee, Chang-Min
Baek, Man-Kee
Jeong, O-Young
Kim, Suk-Man
author_sort Park, Hyun-Su
collection PubMed
description Grain shape is one of the key factors deciding the yield product and the market value as appearance quality in rice (Oryza sativa L.). The grain shape of japonica cultivars in Korea is quite monotonous because the selection pressure of rice breeding programs works in consideration of consumer preference. In this study, we identified QTLs associated with grain shape to improve the variety of grain shapes in Korean cultivars. QTL analysis revealed that eight QTLs related to five tested traits were detected on chromosomes 2, 5, and 10. Among them, three QTLs—qGL2 (33.9% of PEV for grain length), qGW5 (64.42% for grain width), and qGT10 (49.2% for grain thickness)—were regarded as the main effect QTLs. Using the three QTLs, an ideal QTL combination (qGL2(P) + qGW5(P) + qGT10(B)) could be constructed on the basis of the accumulated QTL effect without yield loss caused by the change in grain shape in the population. In addition, three promising lines with a slender grain type were selected as a breeding resource with a japonica genetic background based on the QTL combination. The application of QTLs detected in this study could improve the grain shape of japonica cultivars without any linkage drag or yield loss.
format Online
Article
Text
id pubmed-10097285
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100972852023-04-13 Application of a Novel Quantitative Trait Locus Combination to Improve Grain Shape without Yield Loss in Rice (Oryza sativa L. spp. japonica) Park, Hyun-Su Lee, Chang-Min Baek, Man-Kee Jeong, O-Young Kim, Suk-Man Plants (Basel) Article Grain shape is one of the key factors deciding the yield product and the market value as appearance quality in rice (Oryza sativa L.). The grain shape of japonica cultivars in Korea is quite monotonous because the selection pressure of rice breeding programs works in consideration of consumer preference. In this study, we identified QTLs associated with grain shape to improve the variety of grain shapes in Korean cultivars. QTL analysis revealed that eight QTLs related to five tested traits were detected on chromosomes 2, 5, and 10. Among them, three QTLs—qGL2 (33.9% of PEV for grain length), qGW5 (64.42% for grain width), and qGT10 (49.2% for grain thickness)—were regarded as the main effect QTLs. Using the three QTLs, an ideal QTL combination (qGL2(P) + qGW5(P) + qGT10(B)) could be constructed on the basis of the accumulated QTL effect without yield loss caused by the change in grain shape in the population. In addition, three promising lines with a slender grain type were selected as a breeding resource with a japonica genetic background based on the QTL combination. The application of QTLs detected in this study could improve the grain shape of japonica cultivars without any linkage drag or yield loss. MDPI 2023-03-30 /pmc/articles/PMC10097285/ /pubmed/37050138 http://dx.doi.org/10.3390/plants12071513 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Park, Hyun-Su
Lee, Chang-Min
Baek, Man-Kee
Jeong, O-Young
Kim, Suk-Man
Application of a Novel Quantitative Trait Locus Combination to Improve Grain Shape without Yield Loss in Rice (Oryza sativa L. spp. japonica)
title Application of a Novel Quantitative Trait Locus Combination to Improve Grain Shape without Yield Loss in Rice (Oryza sativa L. spp. japonica)
title_full Application of a Novel Quantitative Trait Locus Combination to Improve Grain Shape without Yield Loss in Rice (Oryza sativa L. spp. japonica)
title_fullStr Application of a Novel Quantitative Trait Locus Combination to Improve Grain Shape without Yield Loss in Rice (Oryza sativa L. spp. japonica)
title_full_unstemmed Application of a Novel Quantitative Trait Locus Combination to Improve Grain Shape without Yield Loss in Rice (Oryza sativa L. spp. japonica)
title_short Application of a Novel Quantitative Trait Locus Combination to Improve Grain Shape without Yield Loss in Rice (Oryza sativa L. spp. japonica)
title_sort application of a novel quantitative trait locus combination to improve grain shape without yield loss in rice (oryza sativa l. spp. japonica)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097285/
https://www.ncbi.nlm.nih.gov/pubmed/37050138
http://dx.doi.org/10.3390/plants12071513
work_keys_str_mv AT parkhyunsu applicationofanovelquantitativetraitlocuscombinationtoimprovegrainshapewithoutyieldlossinriceoryzasativalsppjaponica
AT leechangmin applicationofanovelquantitativetraitlocuscombinationtoimprovegrainshapewithoutyieldlossinriceoryzasativalsppjaponica
AT baekmankee applicationofanovelquantitativetraitlocuscombinationtoimprovegrainshapewithoutyieldlossinriceoryzasativalsppjaponica
AT jeongoyoung applicationofanovelquantitativetraitlocuscombinationtoimprovegrainshapewithoutyieldlossinriceoryzasativalsppjaponica
AT kimsukman applicationofanovelquantitativetraitlocuscombinationtoimprovegrainshapewithoutyieldlossinriceoryzasativalsppjaponica