Cargando…

A flow electrochemistry‐enabled synthesis of 2‐substituted N‐(methyl‐d)piperidines

A synthesis of N‐monodeuteriomethyl‐2‐substituted piperidines is described. An efficient and readily scalable anodic methoxylation of N‐formylpiperidine in an undivided microfluidic electrolysis cell delivers methoxylated piperidine 3, which is a precursor to a N‐formyliminium ion and enables C‐nucl...

Descripción completa

Detalles Bibliográficos
Autores principales: AL‐Hadedi, Azzam A. M., Sawyer, Stuart, Elliott, Stuart J., Green, Robert A., O'Leary, Daniel J., Brown, Richard C. D., Brown, Lynda J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098938/
https://www.ncbi.nlm.nih.gov/pubmed/36272110
http://dx.doi.org/10.1002/jlcr.4006
Descripción
Sumario:A synthesis of N‐monodeuteriomethyl‐2‐substituted piperidines is described. An efficient and readily scalable anodic methoxylation of N‐formylpiperidine in an undivided microfluidic electrolysis cell delivers methoxylated piperidine 3, which is a precursor to a N‐formyliminium ion and enables C‐nucleophiles to be introduced at the 2‐position. The isotopically labelled N‐deuteriomethyl group is installed using the Eschweiler–Clarke reaction with formic acid‐d (2) and unlabelled formaldehyde. Monodeuterated N‐methyl groups in these molecular systems possess small isotropic proton chemical shift differences important in the investigation of molecules that are able to support long‐lived nuclear spin states in solution nuclear magnetic resonance.