Cargando…
Sensor Fusion of GNSS and IMU Data for Robust Localization via Smoothed Error State Kalman Filter
High−precision and robust localization is critical for intelligent vehicle and transportation systems, while the sensor signal loss or variance could dramatically affect the localization performance. The vehicle localization problem in an environment with Global Navigation Satellite System (GNSS) si...
Autores principales: | Yin, Yuming, Zhang, Jinhong, Guo, Mengqi, Ning, Xiaobin, Wang, Yuan, Lu, Jianshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099052/ https://www.ncbi.nlm.nih.gov/pubmed/37050736 http://dx.doi.org/10.3390/s23073676 |
Ejemplares similares
-
Deep Kalman Filter: Simultaneous Multi-Sensor Integration and Modelling; A GNSS/IMU Case Study
por: Hosseinyalamdary, Siavash
Publicado: (2018) -
A Robust Vehicle Localization Approach Based on GNSS/IMU/DMI/LiDAR Sensor Fusion for Autonomous Vehicles
por: Meng, Xiaoli, et al.
Publicado: (2017) -
Error Overboundings of KF-Based IMU/GNSS Integrated System Against IMU Faults
por: Liu, Wei, et al.
Publicado: (2019) -
Tightly Coupled GNSS/INS Integration with Robust Sequential Kalman Filter for Accurate Vehicular Navigation
por: Dong, Yi, et al.
Publicado: (2020) -
Evaluation of Low-Complexity Adaptive Full Direct-State Kalman Filter for Robust GNSS Tracking †
por: Cortés, Iñigo, et al.
Publicado: (2023)