Cargando…

Intra-Domain Residue Coevolution in Transcription Factors Contributes to DNA Binding Specificity

Understanding the basis of the DNA-binding specificity of transcription factors (TFs) has been of long-standing interest. Despite extensive efforts to map millions of putative TF binding sequences, identifying the critical determinants for DNA binding specificity remains a major challenge. The coevo...

Descripción completa

Detalles Bibliográficos
Autores principales: Luan, Yizhao, Tang, Zehua, He, Yao, Xie, Zhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100741/
https://www.ncbi.nlm.nih.gov/pubmed/36943132
http://dx.doi.org/10.1128/spectrum.03651-22
Descripción
Sumario:Understanding the basis of the DNA-binding specificity of transcription factors (TFs) has been of long-standing interest. Despite extensive efforts to map millions of putative TF binding sequences, identifying the critical determinants for DNA binding specificity remains a major challenge. The coevolution of residues in proteins occurs due to a shared evolutionary history. However, it is unclear how coevolving residues in TFs contribute to DNA binding specificity. Here, we systematically collected publicly available data sets from multiple large-scale high-throughput TF–DNA interaction screening experiments for the major TF families with large numbers of TF members. These families included the Homeobox, HLH, bZIP_1, Ets, HMG_box, ZF-C4, and Zn_clus TFs. We detected TF subclass-determining sites (TSDSs) and showed that the TSDSs were more likely to coevolve with other TSDSs than with non-TSDSs, particularly for the Homeobox, HLH, Ets, bZIP_1, and HMG_box TF families. By in silico modeling, we showed that mutation of the highly coevolving residues could significantly reduce the stability of the TF–DNA complex. The distant residues from the DNA interface also contributed to TF–DNA binding activity. Overall, our study gave evidence that coevolved residues relate to transcriptional regulation and provided insights into the potential application of engineered DNA-binding domains and proteins. IMPORTANCE While unraveling DNA-binding specificity of TFs is the key to understanding the basis and molecular mechanism of gene expression regulation, identifying the critical determinants that contribute to DNA binding specificity remains a major challenge. In this study, we provided evidence showing that coevolving residues in TF domains contributed to DNA binding specificity. We demonstrated that the TSDSs were more likely to coevolve with other TSDSs than with non-TSDSs. Mutation of the coevolving residue pairs (CRPs) could significantly reduce the stability of THE TF–DNA complex, and even the distant residues from the DNA interface contribute to TF–DNA binding activity. Collectively, our study expands our knowledge of the interactions among coevolved residues in TFs, tertiary contacting, and functional importance in refined transcriptional regulation. Understanding the impact of coevolving residues in TFs will help understand the details of transcription of gene regulation and advance the application of engineered DNA-binding domains and protein.