Cargando…

Effects of Lumacaftor-Ivacaftor on Airway Microbiota-Mycobiota and Inflammation in Patients with Cystic Fibrosis Appear To Be Linked to Pseudomonas aeruginosa Chronic Colonization

Lumacaftor-ivacaftor is a cystic fibrosis transmembrane conductance regulator (CFTR) modulator combination approved for patients with cystic fibrosis (CF) who are homozygous for the F508del allele. This treatment showed significant clinical improvement; however, few studies have addressed the evolut...

Descripción completa

Detalles Bibliográficos
Autores principales: Enaud, Raphael, Lussac-Sorton, Florian, Charpentier, Elena, Velo-Suárez, Lourdes, Guiraud, Jennifer, Bui, Stéphanie, Fayon, Michael, Schaeverbeke, Thierry, Nikolski, Macha, Burgel, Pierre-Régis, Héry-Arnaud, Geneviève, Delhaes, Laurence
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100832/
https://www.ncbi.nlm.nih.gov/pubmed/36971560
http://dx.doi.org/10.1128/spectrum.02251-22
_version_ 1785025367405232128
author Enaud, Raphael
Lussac-Sorton, Florian
Charpentier, Elena
Velo-Suárez, Lourdes
Guiraud, Jennifer
Bui, Stéphanie
Fayon, Michael
Schaeverbeke, Thierry
Nikolski, Macha
Burgel, Pierre-Régis
Héry-Arnaud, Geneviève
Delhaes, Laurence
author_facet Enaud, Raphael
Lussac-Sorton, Florian
Charpentier, Elena
Velo-Suárez, Lourdes
Guiraud, Jennifer
Bui, Stéphanie
Fayon, Michael
Schaeverbeke, Thierry
Nikolski, Macha
Burgel, Pierre-Régis
Héry-Arnaud, Geneviève
Delhaes, Laurence
author_sort Enaud, Raphael
collection PubMed
description Lumacaftor-ivacaftor is a cystic fibrosis transmembrane conductance regulator (CFTR) modulator combination approved for patients with cystic fibrosis (CF) who are homozygous for the F508del allele. This treatment showed significant clinical improvement; however, few studies have addressed the evolution of the airway microbiota-mycobiota and inflammation in patients receiving lumacaftor-ivacaftor treatment. Seventy-five patients with CF aged 12 years or older were enrolled at the initiation of lumacaftor-ivacaftor therapy. Among them, 41 had spontaneously produced sputa collected before and 6 months after treatment initiation. Airway microbiota and mycobiota analyses were performed via high-throughput sequencing. Airway inflammation was assessed by measuring the calprotectin levels in sputum; the microbial biomass was evaluated via quantitative PCR (qPCR). At baseline (n = 75), bacterial alpha-diversity was correlated with pulmonary function. After 6 months of lumacaftor-ivacaftor treatment, a significant improvement in the body mass index and a decreased number of intravenous antibiotic courses were noted. No significant changes in bacterial and fungal alpha- and beta-diversities, pathogen abundances, or calprotectin levels were observed. However, for patients not chronically colonized with Pseudomonas aeruginosa at treatment initiation, calprotectin levels were lower, and a significant increase in bacterial alpha-diversity was observed at 6 months. This study shows that the evolution of the airway microbiota-mycobiota in CF patients depends on the patient’s characteristics at lumacaftor-ivacaftor treatment initiation, notably chronic colonization with P. aeruginosa. IMPORTANCE The management of cystic fibrosis has been transformed recently by the advent of CFTR modulators, including lumacaftor-ivacaftor. However, the effects of such therapies on the airway ecosystem, particularly on the microbiota-mycobiota and local inflammation, which are involved in the evolution of pulmonary damage, are unclear. This multicenter study of the evolution of the microbiota under protein therapy supports the notion that CFTR modulators should be started as soon as possible, ideally before the patient is chronically colonized with P. aeruginosa. (This study has been registered at ClinicalTrials.gov under identifier NCT03565692).
format Online
Article
Text
id pubmed-10100832
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-101008322023-04-14 Effects of Lumacaftor-Ivacaftor on Airway Microbiota-Mycobiota and Inflammation in Patients with Cystic Fibrosis Appear To Be Linked to Pseudomonas aeruginosa Chronic Colonization Enaud, Raphael Lussac-Sorton, Florian Charpentier, Elena Velo-Suárez, Lourdes Guiraud, Jennifer Bui, Stéphanie Fayon, Michael Schaeverbeke, Thierry Nikolski, Macha Burgel, Pierre-Régis Héry-Arnaud, Geneviève Delhaes, Laurence Microbiol Spectr Research Article Lumacaftor-ivacaftor is a cystic fibrosis transmembrane conductance regulator (CFTR) modulator combination approved for patients with cystic fibrosis (CF) who are homozygous for the F508del allele. This treatment showed significant clinical improvement; however, few studies have addressed the evolution of the airway microbiota-mycobiota and inflammation in patients receiving lumacaftor-ivacaftor treatment. Seventy-five patients with CF aged 12 years or older were enrolled at the initiation of lumacaftor-ivacaftor therapy. Among them, 41 had spontaneously produced sputa collected before and 6 months after treatment initiation. Airway microbiota and mycobiota analyses were performed via high-throughput sequencing. Airway inflammation was assessed by measuring the calprotectin levels in sputum; the microbial biomass was evaluated via quantitative PCR (qPCR). At baseline (n = 75), bacterial alpha-diversity was correlated with pulmonary function. After 6 months of lumacaftor-ivacaftor treatment, a significant improvement in the body mass index and a decreased number of intravenous antibiotic courses were noted. No significant changes in bacterial and fungal alpha- and beta-diversities, pathogen abundances, or calprotectin levels were observed. However, for patients not chronically colonized with Pseudomonas aeruginosa at treatment initiation, calprotectin levels were lower, and a significant increase in bacterial alpha-diversity was observed at 6 months. This study shows that the evolution of the airway microbiota-mycobiota in CF patients depends on the patient’s characteristics at lumacaftor-ivacaftor treatment initiation, notably chronic colonization with P. aeruginosa. IMPORTANCE The management of cystic fibrosis has been transformed recently by the advent of CFTR modulators, including lumacaftor-ivacaftor. However, the effects of such therapies on the airway ecosystem, particularly on the microbiota-mycobiota and local inflammation, which are involved in the evolution of pulmonary damage, are unclear. This multicenter study of the evolution of the microbiota under protein therapy supports the notion that CFTR modulators should be started as soon as possible, ideally before the patient is chronically colonized with P. aeruginosa. (This study has been registered at ClinicalTrials.gov under identifier NCT03565692). American Society for Microbiology 2023-03-27 /pmc/articles/PMC10100832/ /pubmed/36971560 http://dx.doi.org/10.1128/spectrum.02251-22 Text en Copyright © 2023 Enaud et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Enaud, Raphael
Lussac-Sorton, Florian
Charpentier, Elena
Velo-Suárez, Lourdes
Guiraud, Jennifer
Bui, Stéphanie
Fayon, Michael
Schaeverbeke, Thierry
Nikolski, Macha
Burgel, Pierre-Régis
Héry-Arnaud, Geneviève
Delhaes, Laurence
Effects of Lumacaftor-Ivacaftor on Airway Microbiota-Mycobiota and Inflammation in Patients with Cystic Fibrosis Appear To Be Linked to Pseudomonas aeruginosa Chronic Colonization
title Effects of Lumacaftor-Ivacaftor on Airway Microbiota-Mycobiota and Inflammation in Patients with Cystic Fibrosis Appear To Be Linked to Pseudomonas aeruginosa Chronic Colonization
title_full Effects of Lumacaftor-Ivacaftor on Airway Microbiota-Mycobiota and Inflammation in Patients with Cystic Fibrosis Appear To Be Linked to Pseudomonas aeruginosa Chronic Colonization
title_fullStr Effects of Lumacaftor-Ivacaftor on Airway Microbiota-Mycobiota and Inflammation in Patients with Cystic Fibrosis Appear To Be Linked to Pseudomonas aeruginosa Chronic Colonization
title_full_unstemmed Effects of Lumacaftor-Ivacaftor on Airway Microbiota-Mycobiota and Inflammation in Patients with Cystic Fibrosis Appear To Be Linked to Pseudomonas aeruginosa Chronic Colonization
title_short Effects of Lumacaftor-Ivacaftor on Airway Microbiota-Mycobiota and Inflammation in Patients with Cystic Fibrosis Appear To Be Linked to Pseudomonas aeruginosa Chronic Colonization
title_sort effects of lumacaftor-ivacaftor on airway microbiota-mycobiota and inflammation in patients with cystic fibrosis appear to be linked to pseudomonas aeruginosa chronic colonization
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100832/
https://www.ncbi.nlm.nih.gov/pubmed/36971560
http://dx.doi.org/10.1128/spectrum.02251-22
work_keys_str_mv AT enaudraphael effectsoflumacaftorivacaftoronairwaymicrobiotamycobiotaandinflammationinpatientswithcysticfibrosisappeartobelinkedtopseudomonasaeruginosachroniccolonization
AT lussacsortonflorian effectsoflumacaftorivacaftoronairwaymicrobiotamycobiotaandinflammationinpatientswithcysticfibrosisappeartobelinkedtopseudomonasaeruginosachroniccolonization
AT charpentierelena effectsoflumacaftorivacaftoronairwaymicrobiotamycobiotaandinflammationinpatientswithcysticfibrosisappeartobelinkedtopseudomonasaeruginosachroniccolonization
AT velosuarezlourdes effectsoflumacaftorivacaftoronairwaymicrobiotamycobiotaandinflammationinpatientswithcysticfibrosisappeartobelinkedtopseudomonasaeruginosachroniccolonization
AT guiraudjennifer effectsoflumacaftorivacaftoronairwaymicrobiotamycobiotaandinflammationinpatientswithcysticfibrosisappeartobelinkedtopseudomonasaeruginosachroniccolonization
AT buistephanie effectsoflumacaftorivacaftoronairwaymicrobiotamycobiotaandinflammationinpatientswithcysticfibrosisappeartobelinkedtopseudomonasaeruginosachroniccolonization
AT fayonmichael effectsoflumacaftorivacaftoronairwaymicrobiotamycobiotaandinflammationinpatientswithcysticfibrosisappeartobelinkedtopseudomonasaeruginosachroniccolonization
AT schaeverbekethierry effectsoflumacaftorivacaftoronairwaymicrobiotamycobiotaandinflammationinpatientswithcysticfibrosisappeartobelinkedtopseudomonasaeruginosachroniccolonization
AT nikolskimacha effectsoflumacaftorivacaftoronairwaymicrobiotamycobiotaandinflammationinpatientswithcysticfibrosisappeartobelinkedtopseudomonasaeruginosachroniccolonization
AT effectsoflumacaftorivacaftoronairwaymicrobiotamycobiotaandinflammationinpatientswithcysticfibrosisappeartobelinkedtopseudomonasaeruginosachroniccolonization
AT burgelpierreregis effectsoflumacaftorivacaftoronairwaymicrobiotamycobiotaandinflammationinpatientswithcysticfibrosisappeartobelinkedtopseudomonasaeruginosachroniccolonization
AT heryarnaudgenevieve effectsoflumacaftorivacaftoronairwaymicrobiotamycobiotaandinflammationinpatientswithcysticfibrosisappeartobelinkedtopseudomonasaeruginosachroniccolonization
AT delhaeslaurence effectsoflumacaftorivacaftoronairwaymicrobiotamycobiotaandinflammationinpatientswithcysticfibrosisappeartobelinkedtopseudomonasaeruginosachroniccolonization