Cargando…

PGLYRP1-mIgG2a-Fc inhibits macrophage activation via AKT/NF-κB signaling and protects against fatal lung injury during bacterial infection

Severe bacterial pneumonia leads to acute respiratory distress syndrome (ARDS), with a high incidence rate and mortality. It is well-known that continuous and dysregulated macrophage activation is vital for aggravating the progression of pneumonia. Here, we designed and produced an antibody-like mol...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Yan, Ren, Shan, Song, Luyao, Wang, Siyi, Han, Wei, Li, Jingjing, Yu, Yan, Ma, BuYong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102533/
https://www.ncbi.nlm.nih.gov/pubmed/37113764
http://dx.doi.org/10.1016/j.isci.2023.106653
Descripción
Sumario:Severe bacterial pneumonia leads to acute respiratory distress syndrome (ARDS), with a high incidence rate and mortality. It is well-known that continuous and dysregulated macrophage activation is vital for aggravating the progression of pneumonia. Here, we designed and produced an antibody-like molecule, peptidoglycan recognition protein 1-mIgG2a-Fc (PGLYRP1-Fc). PGLYRP1 was fused to the Fc region of mouse IgG2a with high binding to macrophages. We demonstrated that PGLYRP1-Fc ameliorated lung injury and inflammation in ARDS, without affecting bacterial clearance. Besides, PGLYRP1-Fc reduced AKT/nuclear factor kappa-B (NF-κB) activation via the Fc segment bound Fc gamma receptor (FcγR)-dependent mechanism, making macrophage unresponsive, and immediately suppressed proinflammatory response upon bacteria or lipopolysaccharide (LPS) stimulus in turn. These results confirm that PGLYRP1-Fc protects against ARDS by promoting host tolerance with reduced inflammatory response and tissue damage, irrespective of the host’s pathogen burden, and provide a promising therapeutic strategy for bacterial infection.