Cargando…

Olefination of carbonyls with alkenes enabled by electrophotocatalytic generation of distonic radical cations

The conversion of carbonyls to olefins is a transformation of great importance for complex molecule synthesis. Standard methods use stoichiometric reagents that have poor atom economy and require strongly basic conditions, which limit their functional group compatibility. An ideal solution would be...

Descripción completa

Detalles Bibliográficos
Autores principales: Steiniger, Keri A., Lambert, Tristan H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104462/
https://www.ncbi.nlm.nih.gov/pubmed/37058559
http://dx.doi.org/10.1126/sciadv.adg3026
Descripción
Sumario:The conversion of carbonyls to olefins is a transformation of great importance for complex molecule synthesis. Standard methods use stoichiometric reagents that have poor atom economy and require strongly basic conditions, which limit their functional group compatibility. An ideal solution would be to catalytically olefinate carbonyls under nonbasic conditions using simple and widely available alkenes, yet no such broadly applicable reaction is known. Here, we demonstrate a tandem electrochemical/electrophotocatalytic reaction to olefinate aldehydes and ketones with a broad range of unactivated alkenes. This method involves the oxidation-induced denitrogenation of cyclic diazenes to form 1,3-distonic radical cations that rearrange to yield the olefin products. This olefination reaction is enabled by an electrophotocatalyst that inhibits back-electron transfer to the radical cation intermediate, thus allowing for the selective formation of olefin products. The method is compatible with a wide range of aldehydes, ketones, and alkene partners.