Cargando…

Investigating The Correction of IVS II-1 (G> A) Mutation in HBB Gene in TLS-12 Cell Line Using CRISPR/Cas9 System

OBJECTIVE: Beta-thalassemia is a group of inherited hematologic. The most HBB gene variant among Iranian beta-thalassemia patients is related to two mutations of IVSII-1 (G>A) and IVSI-5 (G>C). Therefore, our aim of this study is to use the knock in capability of CRISPR Cas9 system to investig...

Descripción completa

Detalles Bibliográficos
Autores principales: Servatian, Nazli, Abroun, Saeid, Shahzadeh Fazeli, Seyed Abolhassan, Soleimani, Masoud
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royan Institute 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105294/
https://www.ncbi.nlm.nih.gov/pubmed/37038697
http://dx.doi.org/10.22074/CELLJ.2022.560725.1118
Descripción
Sumario:OBJECTIVE: Beta-thalassemia is a group of inherited hematologic. The most HBB gene variant among Iranian beta-thalassemia patients is related to two mutations of IVSII-1 (G>A) and IVSI-5 (G>C). Therefore, our aim of this study is to use the knock in capability of CRISPR Cas9 system to investigate the correction of IVSII-1 (G>A) variant in Iran. MATERIALS AND METHODS: In this experimental study, following bioinformatics studies, the vector containing Puromycin resistant gene (PX459) was cloned individually by designed RNA-guided nucleases (gRNAs), and cloning was confirmed by sequencing. Proliferation of TLS-12 was done. Then, the transfect was set up by the vector with GFP marker (PX458). The PX459 vectors carrying the designed gRNAs together with Single-stranded oligodeoxynucleotides (ssODNs) as healthy DNA pattern were transfected into TLS-12 cells. After taking the single cell clones, molecular evaluations were performed on single clones. Sanger sequencing was then performed to investigate homology directed repair (HDR). RESULTS: The sequencing results confirmed that all three gRNAs were successfully cloned into PX459 vector. In the transfection phase, The TLS-12 containing PX459-gRNA/ssODN was selected. Molecular evaluations showed that the HBB gene was cleaved by the CRISPR/Cas9 system, that indicates that the performance of non-homologous end joining (NHEJ) repair system. Sequencing in some clones cleaved by the T7E1 enzyme showed that HDR was not confirmed in these clones. CONCLUSION: IVS-II-1 (G> A) mutation, which is the most common thalassemia mutation especially in Iran, the CRISPR/ Cas9 system was able to specifically target the HBB gene sequence. This could even lead to a correction in the mutation and efficiency of the HDR repair system in future research.