Cargando…

Boosting Ring Strain and Lewis Acidity of Borirane: Synthesis, Reactivity and Density Functional Theory Studies of an Uncoordinated Arylborirane Fused to o‐Carborane

Among the parent borirane, benzoborirene and ortho‐dicarbadodecaborane‐fused borirane, the latter possesses the highest ring strain and the highest Lewis acidity according to our density functional theory (DFT) studies. The synthesis of this class of compounds is thus considerably challenging. The e...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Yuxiang, Wang, Junyi, Yang, Weiguang, Lin, Zhenyang, Ye, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107145/
https://www.ncbi.nlm.nih.gov/pubmed/36278311
http://dx.doi.org/10.1002/chem.202203265
Descripción
Sumario:Among the parent borirane, benzoborirene and ortho‐dicarbadodecaborane‐fused borirane, the latter possesses the highest ring strain and the highest Lewis acidity according to our density functional theory (DFT) studies. The synthesis of this class of compounds is thus considerably challenging. The existing examples require either a strong π‐donating group or an extra ligand for B‐coordination, which nevertheless suppresses or completely turns off the Lewis acidity. The title compound, which possesses both features, not only allows the 1,2‐insertion of P=O, C=O or C≡N to proceed under milder conditions, but also enables the heretofore unknown dearomative 1,4‐insertion of Ar−(C=O)− into a B−C bond. The fusion of strained molecular systems to an o‐carborane cage shows great promise for boosting both the ring strain and acidity.