Cargando…

Low‐energy electron microscopy intensity–voltage data – Factorization, sparse sampling and classification

Low‐energy electron microscopy (LEEM) taken as intensity–voltage (I–V) curves provides hyperspectral images of surfaces, which can be used to identify the surface type, but are difficult to analyse. Here, we demonstrate the use of an algorithm for factorizing the data into spectra and concentrations...

Descripción completa

Detalles Bibliográficos
Autores principales: Masia, Francesco, Langbein, Wolfgang, Fischer, Simon, Krisponeit, Jon‐Olaf, Falta, Jens
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108219/
https://www.ncbi.nlm.nih.gov/pubmed/36288376
http://dx.doi.org/10.1111/jmi.13155
Descripción
Sumario:Low‐energy electron microscopy (LEEM) taken as intensity–voltage (I–V) curves provides hyperspectral images of surfaces, which can be used to identify the surface type, but are difficult to analyse. Here, we demonstrate the use of an algorithm for factorizing the data into spectra and concentrations of characteristic components (FSC(3)) for identifying distinct physical surface phases. Importantly, FSC(3) is an unsupervised and fast algorithm. As example data we use experiments on the growth of praseodymium oxide or ruthenium oxide on ruthenium single crystal substrates, both featuring a complex distribution of coexisting surface components, varying in both chemical composition and crystallographic structure. With the factorization result a sparse sampling method is demonstrated, reducing the measurement time by 1–2 orders of magnitude, relevant for dynamic surface studies. The FSC(3) concentrations are providing the features for a support vector machine‐based supervised classification of the surface types. Here, specific surface regions which have been identified structurally, via their diffraction pattern, as well as chemically by complementary spectro‐microscopic techniques, are used as training sets. A reliable classification is demonstrated on both example LEEM I–V data sets.