Cargando…
Drug-target interaction prediction based on spatial consistency constraint and graph convolutional autoencoder
BACKGROUND: Drug-target interaction (DTI) prediction plays an important role in drug discovery and repositioning. However, most of the computational methods used for identifying relevant DTIs do not consider the invariance of the nearest neighbour relationships between drugs or targets. In other wor...
Autores principales: | Chen, Peng, Zheng, Haoran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10109239/ https://www.ncbi.nlm.nih.gov/pubmed/37069493 http://dx.doi.org/10.1186/s12859-023-05275-3 |
Ejemplares similares
-
VGAEDTI: drug-target interaction prediction based on variational inference and graph autoencoder
por: Zhang, Yuanyuan, et al.
Publicado: (2023) -
Predicting Drug Synergy and Discovering New Drug Combinations Based on a Graph Autoencoder and Convolutional Neural Network
por: Li, Huijun, et al.
Publicado: (2023) -
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder
por: Li, Lei, et al.
Publicado: (2021) -
Graph regularized non-negative matrix factorization with prior knowledge consistency constraint for drug–target interactions prediction
por: Zhang, Junjun, et al.
Publicado: (2022) -
Prediction of miRNA-disease associations in microbes based on graph convolutional networks and autoencoders
por: Liao, Qingquan, et al.
Publicado: (2023)