Cargando…

Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila

Modification by sialylated glycans can affect protein functions, underlying mechanisms that control animal development and physiology. Sialylation relies on a dedicated pathway involving evolutionarily conserved enzymes, including CMP-sialic acid synthetase (CSAS) and sialyltransferase (SiaT) that m...

Descripción completa

Detalles Bibliográficos
Autores principales: Scott, Hilary, Novikov, Boris, Ugur, Berrak, Allen, Brooke, Mertsalov, Ilya, Monagas-Valentin, Pedro, Koff, Melissa, Baas Robinson, Sarah, Aoki, Kazuhiro, Veizaj, Raisa, Lefeber, Dirk J, Tiemeyer, Michael, Bellen, Hugo, Panin, Vladislav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110239/
https://www.ncbi.nlm.nih.gov/pubmed/36946697
http://dx.doi.org/10.7554/eLife.78280
_version_ 1785027229103685632
author Scott, Hilary
Novikov, Boris
Ugur, Berrak
Allen, Brooke
Mertsalov, Ilya
Monagas-Valentin, Pedro
Koff, Melissa
Baas Robinson, Sarah
Aoki, Kazuhiro
Veizaj, Raisa
Lefeber, Dirk J
Tiemeyer, Michael
Bellen, Hugo
Panin, Vladislav
author_facet Scott, Hilary
Novikov, Boris
Ugur, Berrak
Allen, Brooke
Mertsalov, Ilya
Monagas-Valentin, Pedro
Koff, Melissa
Baas Robinson, Sarah
Aoki, Kazuhiro
Veizaj, Raisa
Lefeber, Dirk J
Tiemeyer, Michael
Bellen, Hugo
Panin, Vladislav
author_sort Scott, Hilary
collection PubMed
description Modification by sialylated glycans can affect protein functions, underlying mechanisms that control animal development and physiology. Sialylation relies on a dedicated pathway involving evolutionarily conserved enzymes, including CMP-sialic acid synthetase (CSAS) and sialyltransferase (SiaT) that mediate the activation of sialic acid and its transfer onto glycan termini, respectively. In Drosophila, CSAS and DSiaT genes function in the nervous system, affecting neural transmission and excitability. We found that these genes function in different cells: the function of CSAS is restricted to glia, while DSiaT functions in neurons. This partition of the sialylation pathway allows for regulation of neural functions via a glia-mediated control of neural sialylation. The sialylation genes were shown to be required for tolerance to heat and oxidative stress and for maintenance of the normal level of voltage-gated sodium channels. Our results uncovered a unique bipartite sialylation pathway that mediates glia-neuron coupling and regulates neural excitability and stress tolerance.
format Online
Article
Text
id pubmed-10110239
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-101102392023-04-18 Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila Scott, Hilary Novikov, Boris Ugur, Berrak Allen, Brooke Mertsalov, Ilya Monagas-Valentin, Pedro Koff, Melissa Baas Robinson, Sarah Aoki, Kazuhiro Veizaj, Raisa Lefeber, Dirk J Tiemeyer, Michael Bellen, Hugo Panin, Vladislav eLife Biochemistry and Chemical Biology Modification by sialylated glycans can affect protein functions, underlying mechanisms that control animal development and physiology. Sialylation relies on a dedicated pathway involving evolutionarily conserved enzymes, including CMP-sialic acid synthetase (CSAS) and sialyltransferase (SiaT) that mediate the activation of sialic acid and its transfer onto glycan termini, respectively. In Drosophila, CSAS and DSiaT genes function in the nervous system, affecting neural transmission and excitability. We found that these genes function in different cells: the function of CSAS is restricted to glia, while DSiaT functions in neurons. This partition of the sialylation pathway allows for regulation of neural functions via a glia-mediated control of neural sialylation. The sialylation genes were shown to be required for tolerance to heat and oxidative stress and for maintenance of the normal level of voltage-gated sodium channels. Our results uncovered a unique bipartite sialylation pathway that mediates glia-neuron coupling and regulates neural excitability and stress tolerance. eLife Sciences Publications, Ltd 2023-03-22 /pmc/articles/PMC10110239/ /pubmed/36946697 http://dx.doi.org/10.7554/eLife.78280 Text en © 2023, Scott, Novikov et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Biochemistry and Chemical Biology
Scott, Hilary
Novikov, Boris
Ugur, Berrak
Allen, Brooke
Mertsalov, Ilya
Monagas-Valentin, Pedro
Koff, Melissa
Baas Robinson, Sarah
Aoki, Kazuhiro
Veizaj, Raisa
Lefeber, Dirk J
Tiemeyer, Michael
Bellen, Hugo
Panin, Vladislav
Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila
title Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila
title_full Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila
title_fullStr Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila
title_full_unstemmed Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila
title_short Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila
title_sort glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in drosophila
topic Biochemistry and Chemical Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110239/
https://www.ncbi.nlm.nih.gov/pubmed/36946697
http://dx.doi.org/10.7554/eLife.78280
work_keys_str_mv AT scotthilary glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila
AT novikovboris glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila
AT ugurberrak glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila
AT allenbrooke glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila
AT mertsalovilya glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila
AT monagasvalentinpedro glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila
AT koffmelissa glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila
AT baasrobinsonsarah glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila
AT aokikazuhiro glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila
AT veizajraisa glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila
AT lefeberdirkj glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila
AT tiemeyermichael glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila
AT bellenhugo glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila
AT paninvladislav glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila