Cargando…
Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila
Modification by sialylated glycans can affect protein functions, underlying mechanisms that control animal development and physiology. Sialylation relies on a dedicated pathway involving evolutionarily conserved enzymes, including CMP-sialic acid synthetase (CSAS) and sialyltransferase (SiaT) that m...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110239/ https://www.ncbi.nlm.nih.gov/pubmed/36946697 http://dx.doi.org/10.7554/eLife.78280 |
_version_ | 1785027229103685632 |
---|---|
author | Scott, Hilary Novikov, Boris Ugur, Berrak Allen, Brooke Mertsalov, Ilya Monagas-Valentin, Pedro Koff, Melissa Baas Robinson, Sarah Aoki, Kazuhiro Veizaj, Raisa Lefeber, Dirk J Tiemeyer, Michael Bellen, Hugo Panin, Vladislav |
author_facet | Scott, Hilary Novikov, Boris Ugur, Berrak Allen, Brooke Mertsalov, Ilya Monagas-Valentin, Pedro Koff, Melissa Baas Robinson, Sarah Aoki, Kazuhiro Veizaj, Raisa Lefeber, Dirk J Tiemeyer, Michael Bellen, Hugo Panin, Vladislav |
author_sort | Scott, Hilary |
collection | PubMed |
description | Modification by sialylated glycans can affect protein functions, underlying mechanisms that control animal development and physiology. Sialylation relies on a dedicated pathway involving evolutionarily conserved enzymes, including CMP-sialic acid synthetase (CSAS) and sialyltransferase (SiaT) that mediate the activation of sialic acid and its transfer onto glycan termini, respectively. In Drosophila, CSAS and DSiaT genes function in the nervous system, affecting neural transmission and excitability. We found that these genes function in different cells: the function of CSAS is restricted to glia, while DSiaT functions in neurons. This partition of the sialylation pathway allows for regulation of neural functions via a glia-mediated control of neural sialylation. The sialylation genes were shown to be required for tolerance to heat and oxidative stress and for maintenance of the normal level of voltage-gated sodium channels. Our results uncovered a unique bipartite sialylation pathway that mediates glia-neuron coupling and regulates neural excitability and stress tolerance. |
format | Online Article Text |
id | pubmed-10110239 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-101102392023-04-18 Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila Scott, Hilary Novikov, Boris Ugur, Berrak Allen, Brooke Mertsalov, Ilya Monagas-Valentin, Pedro Koff, Melissa Baas Robinson, Sarah Aoki, Kazuhiro Veizaj, Raisa Lefeber, Dirk J Tiemeyer, Michael Bellen, Hugo Panin, Vladislav eLife Biochemistry and Chemical Biology Modification by sialylated glycans can affect protein functions, underlying mechanisms that control animal development and physiology. Sialylation relies on a dedicated pathway involving evolutionarily conserved enzymes, including CMP-sialic acid synthetase (CSAS) and sialyltransferase (SiaT) that mediate the activation of sialic acid and its transfer onto glycan termini, respectively. In Drosophila, CSAS and DSiaT genes function in the nervous system, affecting neural transmission and excitability. We found that these genes function in different cells: the function of CSAS is restricted to glia, while DSiaT functions in neurons. This partition of the sialylation pathway allows for regulation of neural functions via a glia-mediated control of neural sialylation. The sialylation genes were shown to be required for tolerance to heat and oxidative stress and for maintenance of the normal level of voltage-gated sodium channels. Our results uncovered a unique bipartite sialylation pathway that mediates glia-neuron coupling and regulates neural excitability and stress tolerance. eLife Sciences Publications, Ltd 2023-03-22 /pmc/articles/PMC10110239/ /pubmed/36946697 http://dx.doi.org/10.7554/eLife.78280 Text en © 2023, Scott, Novikov et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Biochemistry and Chemical Biology Scott, Hilary Novikov, Boris Ugur, Berrak Allen, Brooke Mertsalov, Ilya Monagas-Valentin, Pedro Koff, Melissa Baas Robinson, Sarah Aoki, Kazuhiro Veizaj, Raisa Lefeber, Dirk J Tiemeyer, Michael Bellen, Hugo Panin, Vladislav Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila |
title | Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila |
title_full | Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila |
title_fullStr | Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila |
title_full_unstemmed | Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila |
title_short | Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila |
title_sort | glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in drosophila |
topic | Biochemistry and Chemical Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110239/ https://www.ncbi.nlm.nih.gov/pubmed/36946697 http://dx.doi.org/10.7554/eLife.78280 |
work_keys_str_mv | AT scotthilary glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila AT novikovboris glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila AT ugurberrak glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila AT allenbrooke glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila AT mertsalovilya glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila AT monagasvalentinpedro glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila AT koffmelissa glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila AT baasrobinsonsarah glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila AT aokikazuhiro glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila AT veizajraisa glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila AT lefeberdirkj glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila AT tiemeyermichael glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila AT bellenhugo glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila AT paninvladislav glianeuroncouplingviaabipartitesialylationpathwaypromotesneuraltransmissionandstresstoleranceindrosophila |