Cargando…
streammd: fast low-memory duplicate marking using a Bloom filter
SUMMARY: Identification of duplicate templates is a common preprocessing step in bulk sequence analysis; for large libraries, this can be resource intensive. Here, we present streammd: a fast, memory-efficient, single-pass duplicate marker operating on the principle of a Bloom filter. streammd close...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112951/ https://www.ncbi.nlm.nih.gov/pubmed/37027230 http://dx.doi.org/10.1093/bioinformatics/btad181 |
_version_ | 1785027723546066944 |
---|---|
author | Leonard, Conrad |
author_facet | Leonard, Conrad |
author_sort | Leonard, Conrad |
collection | PubMed |
description | SUMMARY: Identification of duplicate templates is a common preprocessing step in bulk sequence analysis; for large libraries, this can be resource intensive. Here, we present streammd: a fast, memory-efficient, single-pass duplicate marker operating on the principle of a Bloom filter. streammd closely reproduces outputs from Picard MarkDuplicates while being substantially faster, and requires much less memory than SAMBLASTER. AVAILABILITY AND IMPLEMENTATION: streammd is a C++ program available from GitHub https://github.com/delocalizer/streammd under the MIT license. |
format | Online Article Text |
id | pubmed-10112951 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-101129512023-04-19 streammd: fast low-memory duplicate marking using a Bloom filter Leonard, Conrad Bioinformatics Applications Note SUMMARY: Identification of duplicate templates is a common preprocessing step in bulk sequence analysis; for large libraries, this can be resource intensive. Here, we present streammd: a fast, memory-efficient, single-pass duplicate marker operating on the principle of a Bloom filter. streammd closely reproduces outputs from Picard MarkDuplicates while being substantially faster, and requires much less memory than SAMBLASTER. AVAILABILITY AND IMPLEMENTATION: streammd is a C++ program available from GitHub https://github.com/delocalizer/streammd under the MIT license. Oxford University Press 2023-04-07 /pmc/articles/PMC10112951/ /pubmed/37027230 http://dx.doi.org/10.1093/bioinformatics/btad181 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Applications Note Leonard, Conrad streammd: fast low-memory duplicate marking using a Bloom filter |
title |
streammd: fast low-memory duplicate marking using a Bloom filter |
title_full |
streammd: fast low-memory duplicate marking using a Bloom filter |
title_fullStr |
streammd: fast low-memory duplicate marking using a Bloom filter |
title_full_unstemmed |
streammd: fast low-memory duplicate marking using a Bloom filter |
title_short |
streammd: fast low-memory duplicate marking using a Bloom filter |
title_sort | streammd: fast low-memory duplicate marking using a bloom filter |
topic | Applications Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112951/ https://www.ncbi.nlm.nih.gov/pubmed/37027230 http://dx.doi.org/10.1093/bioinformatics/btad181 |
work_keys_str_mv | AT leonardconrad streammdfastlowmemoryduplicatemarkingusingabloomfilter |