Cargando…

Diagnostic posture control system for seated-style echocardiography robot

PURPOSE: Conventional robotic ultrasound systems were utilized with patients in supine positions. Meanwhile, the limitation of the systems is that it is difficult to evacuate the patients in case of emergency (e.g., patient discomfort and system failure) because the patients are restricted between t...

Descripción completa

Detalles Bibliográficos
Autores principales: Shida, Yuuki, Sugawara, Masami, Tsumura, Ryosuke, Chiba, Haruaki, Uejima, Tokuhisa, Iwata, Hiroyasu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113306/
https://www.ncbi.nlm.nih.gov/pubmed/36881353
http://dx.doi.org/10.1007/s11548-022-02829-3
Descripción
Sumario:PURPOSE: Conventional robotic ultrasound systems were utilized with patients in supine positions. Meanwhile, the limitation of the systems is that it is difficult to evacuate the patients in case of emergency (e.g., patient discomfort and system failure) because the patients are restricted between the robot system and bed. Therefore, we validated a feasibility study of seated-style echocardiography using a robot. METHOD: Preliminary experiments were conducted to verify the following two points: (1) diagnostic image quality due to the sitting posture angle and (2) physical load due to the sitting posture angle. For reducing the physical burden, two unique mechanisms were incorporated into the system: (1) a leg pendulum base mechanism to reduce the load on the legs when the lateral bending angle increases, and (2) a roll angle division by a lumbar lateral bending and thoracic rotation mechanisms. RESULTS: Preliminary results demonstrated that adjusting the diagnostic posture angle allowed to obtain the views, including cardiac disease features, as in the conventional examination. The results also demonstrated that the body load reduction mechanism incorporated in the results could reduce the physical load in the seated echocardiography. Furthermore, this system was shown to provide greater safety and shorter evacuation times than conventional systems. CONCLUSION: These results indicate that diagnostic echocardiographic images can be obtained by seated-style echocardiography. It was also suggested that the proposed system can reduce the physical load and guarantee a sense of safety and emergency evacuation. These results demonstrated the possibility of the usage of the seated-style echocardiography robot.