Cargando…

Highly sensitive low-frequency-detectable acoustic sensor using a piezoresistive cantilever for health monitoring applications

This study investigates a cantilever-based pressure sensor that can achieve a resolution of approximately 0.2 mPa, over the frequency range of 0.1–250 Hz. A piezoresistive cantilever with ultra-high acoustic compliance is used as the sensing element in the proposed pressure sensor. We achieved a can...

Descripción completa

Detalles Bibliográficos
Autores principales: Okamoto, Yuki, Nguyen, Thanh-Vinh, Takahashi, Hidetoshi, Takei, Yusuke, Okada, Hironao, Ichiki, Masaaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119305/
https://www.ncbi.nlm.nih.gov/pubmed/37081122
http://dx.doi.org/10.1038/s41598-023-33568-3
Descripción
Sumario:This study investigates a cantilever-based pressure sensor that can achieve a resolution of approximately 0.2 mPa, over the frequency range of 0.1–250 Hz. A piezoresistive cantilever with ultra-high acoustic compliance is used as the sensing element in the proposed pressure sensor. We achieved a cantilever with a sensitivity of approximately 40 times higher than that of the previous cantilever device by realizing an ultrathin (340 nm thick) structure with large pads and narrow hinges. Based on the measurement results, the proposed pressure sensor can measure acoustic signals with frequencies as low as 0.1 Hz. The proposed pressure sensor can be used to measure low-frequency pressure and sound, which is crucial for various applications, including photoacoustic-based gas/chemical sensing and monitoring of physiological parameters and natural disasters. We demonstrate the measurement of heart sounds with a high SNR of 58 dB. We believe the proposed microphone will be used in various applications, such as wearable health monitoring, monitoring of natural disasters, and realization of high-resolution photoacoustic-based gas sensors. We successfully measured the first (S1) and second (S2) cardiac sounds with frequencies of 7–100 Hz and 20–45 Hz, respectively.