Cargando…
Dose–response prediction for in-vitro drug combination datasets: a probabilistic approach
In this paper we propose PIICM, a probabilistic framework for dose–response prediction in high-throughput drug combination datasets. PIICM utilizes a permutation invariant version of the intrinsic co-regionalization model for multi-output Gaussian process regression, to predict dose–response surface...
Autores principales: | Rønneberg, Leiv, Kirk, Paul D. W., Zucknick, Manuela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10120211/ https://www.ncbi.nlm.nih.gov/pubmed/37085771 http://dx.doi.org/10.1186/s12859-023-05256-6 |
Ejemplares similares
-
bayesynergy: flexible Bayesian modelling of synergistic interaction effects in in vitro drug combination experiments
por: Rønneberg, Leiv, et al.
Publicado: (2021) -
screenwerk: a modular tool for the design and analysis of drug combination screens
por: Hanes, Robert, et al.
Publicado: (2022) -
Tissue-specific identification of multi-omics features for pan-cancer drug response prediction
por: Zhao, Zhi, et al.
Publicado: (2022) -
Predicting the Effects of Drug Combinations Using Probabilistic Matrix Factorization
por: Nafshi, Ron, et al.
Publicado: (2021) -
Probabilistic and machine learning-based retrieval approaches for biomedical dataset retrieval
por: Karisani, Payam, et al.
Publicado: (2018)