Cargando…
Thymidine Phosphorylase Deficiency or Inhibition Preserves Cardiac Function in Mice With Acute Myocardial Infarction
BACKGROUND: Ischemic cardiovascular disease is the leading cause of death worldwide. Current pharmacologic therapy has multiple limitations, and patients remain symptomatic despite maximal medical therapies. Deficiency or inhibition of thymidine phosphorylase (TYMP) in mice reduces thrombosis, sugge...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122909/ https://www.ncbi.nlm.nih.gov/pubmed/36974758 http://dx.doi.org/10.1161/JAHA.122.028023 |
_version_ | 1785029584753786880 |
---|---|
author | Du, Lili Yue, Hong Rorabaugh, Boyd R. Li, Oliver Q. Y. DeHart, Autumn R. Toloza‐Alvarez, Gretel Hong, Liang Denvir, James Thompson, Ellen Li, Wei |
author_facet | Du, Lili Yue, Hong Rorabaugh, Boyd R. Li, Oliver Q. Y. DeHart, Autumn R. Toloza‐Alvarez, Gretel Hong, Liang Denvir, James Thompson, Ellen Li, Wei |
author_sort | Du, Lili |
collection | PubMed |
description | BACKGROUND: Ischemic cardiovascular disease is the leading cause of death worldwide. Current pharmacologic therapy has multiple limitations, and patients remain symptomatic despite maximal medical therapies. Deficiency or inhibition of thymidine phosphorylase (TYMP) in mice reduces thrombosis, suggesting that TYMP could be a novel therapeutic target for patients with acute myocardial infarction (AMI). METHODS AND RESULTS: A mouse AMI model was established by ligation of the left anterior descending coronary artery in C57BL/6J wild‐type and TYMP‐deficient (Tymp ( −/− )) mice. Cardiac function was monitored by echocardiography or Langendorff assay. TYMP‐deficient hearts had lower baseline contractility. However, cardiac function, systolic left ventricle anterior wall thickness, and diastolic wall strain were significantly greater 4 weeks after AMI compared with wild‐type hearts. TYMP deficiency reduced microthrombus formation after AMI. TYMP deficiency did not affect angiogenesis in either normal or infarcted myocardium but increased arteriogenesis post‐AMI. TYMP deficiency enhanced the mobilization of bone marrow stem cells and promoted mesenchymal stem cell (MSC) proliferation, migration, and resistance to inflammation and hypoxia. TYMP deficiency increased the number of larger MSCs and decreased matrix metalloproteinase‐2 expression, resulting in a high homing capability. TYMP deficiency induced constitutive AKT phosphorylation in MSCs but reduced expression of genes associated with retinoid‐interferon‐induced mortality‐19, a molecule that enhances cell death. Inhibition of TYMP with its selective inhibitor, tipiracil, phenocopied TYMP deficiency, improved post‐AMI cardiac function and systolic left ventricle anterior wall thickness, attenuated diastolic stiffness, and reduced infarct size. CONCLUSIONS: This study demonstrated that TYMP plays an adverse role after AMI. Targeting TYMP may be a novel therapy for patients with AMI. |
format | Online Article Text |
id | pubmed-10122909 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101229092023-04-24 Thymidine Phosphorylase Deficiency or Inhibition Preserves Cardiac Function in Mice With Acute Myocardial Infarction Du, Lili Yue, Hong Rorabaugh, Boyd R. Li, Oliver Q. Y. DeHart, Autumn R. Toloza‐Alvarez, Gretel Hong, Liang Denvir, James Thompson, Ellen Li, Wei J Am Heart Assoc Original Research BACKGROUND: Ischemic cardiovascular disease is the leading cause of death worldwide. Current pharmacologic therapy has multiple limitations, and patients remain symptomatic despite maximal medical therapies. Deficiency or inhibition of thymidine phosphorylase (TYMP) in mice reduces thrombosis, suggesting that TYMP could be a novel therapeutic target for patients with acute myocardial infarction (AMI). METHODS AND RESULTS: A mouse AMI model was established by ligation of the left anterior descending coronary artery in C57BL/6J wild‐type and TYMP‐deficient (Tymp ( −/− )) mice. Cardiac function was monitored by echocardiography or Langendorff assay. TYMP‐deficient hearts had lower baseline contractility. However, cardiac function, systolic left ventricle anterior wall thickness, and diastolic wall strain were significantly greater 4 weeks after AMI compared with wild‐type hearts. TYMP deficiency reduced microthrombus formation after AMI. TYMP deficiency did not affect angiogenesis in either normal or infarcted myocardium but increased arteriogenesis post‐AMI. TYMP deficiency enhanced the mobilization of bone marrow stem cells and promoted mesenchymal stem cell (MSC) proliferation, migration, and resistance to inflammation and hypoxia. TYMP deficiency increased the number of larger MSCs and decreased matrix metalloproteinase‐2 expression, resulting in a high homing capability. TYMP deficiency induced constitutive AKT phosphorylation in MSCs but reduced expression of genes associated with retinoid‐interferon‐induced mortality‐19, a molecule that enhances cell death. Inhibition of TYMP with its selective inhibitor, tipiracil, phenocopied TYMP deficiency, improved post‐AMI cardiac function and systolic left ventricle anterior wall thickness, attenuated diastolic stiffness, and reduced infarct size. CONCLUSIONS: This study demonstrated that TYMP plays an adverse role after AMI. Targeting TYMP may be a novel therapy for patients with AMI. John Wiley and Sons Inc. 2023-03-28 /pmc/articles/PMC10122909/ /pubmed/36974758 http://dx.doi.org/10.1161/JAHA.122.028023 Text en © 2023 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Du, Lili Yue, Hong Rorabaugh, Boyd R. Li, Oliver Q. Y. DeHart, Autumn R. Toloza‐Alvarez, Gretel Hong, Liang Denvir, James Thompson, Ellen Li, Wei Thymidine Phosphorylase Deficiency or Inhibition Preserves Cardiac Function in Mice With Acute Myocardial Infarction |
title | Thymidine Phosphorylase Deficiency or Inhibition Preserves Cardiac Function in Mice With Acute Myocardial Infarction |
title_full | Thymidine Phosphorylase Deficiency or Inhibition Preserves Cardiac Function in Mice With Acute Myocardial Infarction |
title_fullStr | Thymidine Phosphorylase Deficiency or Inhibition Preserves Cardiac Function in Mice With Acute Myocardial Infarction |
title_full_unstemmed | Thymidine Phosphorylase Deficiency or Inhibition Preserves Cardiac Function in Mice With Acute Myocardial Infarction |
title_short | Thymidine Phosphorylase Deficiency or Inhibition Preserves Cardiac Function in Mice With Acute Myocardial Infarction |
title_sort | thymidine phosphorylase deficiency or inhibition preserves cardiac function in mice with acute myocardial infarction |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122909/ https://www.ncbi.nlm.nih.gov/pubmed/36974758 http://dx.doi.org/10.1161/JAHA.122.028023 |
work_keys_str_mv | AT dulili thymidinephosphorylasedeficiencyorinhibitionpreservescardiacfunctioninmicewithacutemyocardialinfarction AT yuehong thymidinephosphorylasedeficiencyorinhibitionpreservescardiacfunctioninmicewithacutemyocardialinfarction AT rorabaughboydr thymidinephosphorylasedeficiencyorinhibitionpreservescardiacfunctioninmicewithacutemyocardialinfarction AT lioliverqy thymidinephosphorylasedeficiencyorinhibitionpreservescardiacfunctioninmicewithacutemyocardialinfarction AT dehartautumnr thymidinephosphorylasedeficiencyorinhibitionpreservescardiacfunctioninmicewithacutemyocardialinfarction AT tolozaalvarezgretel thymidinephosphorylasedeficiencyorinhibitionpreservescardiacfunctioninmicewithacutemyocardialinfarction AT hongliang thymidinephosphorylasedeficiencyorinhibitionpreservescardiacfunctioninmicewithacutemyocardialinfarction AT denvirjames thymidinephosphorylasedeficiencyorinhibitionpreservescardiacfunctioninmicewithacutemyocardialinfarction AT thompsonellen thymidinephosphorylasedeficiencyorinhibitionpreservescardiacfunctioninmicewithacutemyocardialinfarction AT liwei thymidinephosphorylasedeficiencyorinhibitionpreservescardiacfunctioninmicewithacutemyocardialinfarction |