Cargando…
Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis
The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123761/ https://www.ncbi.nlm.nih.gov/pubmed/36857184 http://dx.doi.org/10.1016/j.celrep.2023.112194 |
_version_ | 1785029728801914880 |
---|---|
author | Guyer, Richard A. Stavely, Rhian Robertson, Keiramarie Bhave, Sukhada Mueller, Jessica L. Picard, Nicole M. Hotta, Ryo Kaltschmidt, Julia A. Goldstein, Allan M. |
author_facet | Guyer, Richard A. Stavely, Rhian Robertson, Keiramarie Bhave, Sukhada Mueller, Jessica L. Picard, Nicole M. Hotta, Ryo Kaltschmidt, Julia A. Goldstein, Allan M. |
author_sort | Guyer, Richard A. |
collection | PubMed |
description | The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition. |
format | Online Article Text |
id | pubmed-10123761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
record_format | MEDLINE/PubMed |
spelling | pubmed-101237612023-04-24 Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis Guyer, Richard A. Stavely, Rhian Robertson, Keiramarie Bhave, Sukhada Mueller, Jessica L. Picard, Nicole M. Hotta, Ryo Kaltschmidt, Julia A. Goldstein, Allan M. Cell Rep Article The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition. 2023-03-28 2023-02-28 /pmc/articles/PMC10123761/ /pubmed/36857184 http://dx.doi.org/10.1016/j.celrep.2023.112194 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Guyer, Richard A. Stavely, Rhian Robertson, Keiramarie Bhave, Sukhada Mueller, Jessica L. Picard, Nicole M. Hotta, Ryo Kaltschmidt, Julia A. Goldstein, Allan M. Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis |
title | Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis |
title_full | Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis |
title_fullStr | Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis |
title_full_unstemmed | Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis |
title_short | Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis |
title_sort | single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123761/ https://www.ncbi.nlm.nih.gov/pubmed/36857184 http://dx.doi.org/10.1016/j.celrep.2023.112194 |
work_keys_str_mv | AT guyerricharda singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis AT stavelyrhian singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis AT robertsonkeiramarie singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis AT bhavesukhada singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis AT muellerjessical singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis AT picardnicolem singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis AT hottaryo singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis AT kaltschmidtjuliaa singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis AT goldsteinallanm singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis |