Cargando…

Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis

The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize...

Descripción completa

Detalles Bibliográficos
Autores principales: Guyer, Richard A., Stavely, Rhian, Robertson, Keiramarie, Bhave, Sukhada, Mueller, Jessica L., Picard, Nicole M., Hotta, Ryo, Kaltschmidt, Julia A., Goldstein, Allan M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123761/
https://www.ncbi.nlm.nih.gov/pubmed/36857184
http://dx.doi.org/10.1016/j.celrep.2023.112194
_version_ 1785029728801914880
author Guyer, Richard A.
Stavely, Rhian
Robertson, Keiramarie
Bhave, Sukhada
Mueller, Jessica L.
Picard, Nicole M.
Hotta, Ryo
Kaltschmidt, Julia A.
Goldstein, Allan M.
author_facet Guyer, Richard A.
Stavely, Rhian
Robertson, Keiramarie
Bhave, Sukhada
Mueller, Jessica L.
Picard, Nicole M.
Hotta, Ryo
Kaltschmidt, Julia A.
Goldstein, Allan M.
author_sort Guyer, Richard A.
collection PubMed
description The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition.
format Online
Article
Text
id pubmed-10123761
institution National Center for Biotechnology Information
language English
publishDate 2023
record_format MEDLINE/PubMed
spelling pubmed-101237612023-04-24 Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis Guyer, Richard A. Stavely, Rhian Robertson, Keiramarie Bhave, Sukhada Mueller, Jessica L. Picard, Nicole M. Hotta, Ryo Kaltschmidt, Julia A. Goldstein, Allan M. Cell Rep Article The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition. 2023-03-28 2023-02-28 /pmc/articles/PMC10123761/ /pubmed/36857184 http://dx.doi.org/10.1016/j.celrep.2023.112194 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Guyer, Richard A.
Stavely, Rhian
Robertson, Keiramarie
Bhave, Sukhada
Mueller, Jessica L.
Picard, Nicole M.
Hotta, Ryo
Kaltschmidt, Julia A.
Goldstein, Allan M.
Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis
title Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis
title_full Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis
title_fullStr Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis
title_full_unstemmed Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis
title_short Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis
title_sort single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123761/
https://www.ncbi.nlm.nih.gov/pubmed/36857184
http://dx.doi.org/10.1016/j.celrep.2023.112194
work_keys_str_mv AT guyerricharda singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis
AT stavelyrhian singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis
AT robertsonkeiramarie singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis
AT bhavesukhada singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis
AT muellerjessical singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis
AT picardnicolem singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis
AT hottaryo singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis
AT kaltschmidtjuliaa singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis
AT goldsteinallanm singlecellmultiomesequencingclarifiesentericglialdiversityandidentifiesanintraganglionicpopulationpoisedforneurogenesis