Cargando…
Gain‑of‑function of IDO in DCs inhibits T cell immunity by metabolically regulating surface molecules and cytokines
Both tolerogenicity and immunogenicity of dendritic cells (DCs) are regulated by their intracellular metabolism. As a rate-limiting enzyme of tryptophan (Trp) metabolism, indoleamine 2,3-dioxygenase (IDO) is involved in regulating the functions of numerous cell types, including DCs, a subset of whic...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126813/ https://www.ncbi.nlm.nih.gov/pubmed/37114180 http://dx.doi.org/10.3892/etm.2023.11933 |
Sumario: | Both tolerogenicity and immunogenicity of dendritic cells (DCs) are regulated by their intracellular metabolism. As a rate-limiting enzyme of tryptophan (Trp) metabolism, indoleamine 2,3-dioxygenase (IDO) is involved in regulating the functions of numerous cell types, including DCs, a subset of which has a high capacity for producing IDO to control over-activated inflammation. To identify the mechanisms of IDO in DCs, stable DC lines with both gain- and reduction-of-function of IDO were established using a recombinant DNA technique. Although the IDO variation did not affect DC survival and migration, it altered Trp metabolism and other features of DCs analyzed by high-performance liquid chromatography and flow cytometry. On the surface of the DCs, IDO inhibited co-stimulatory CD86 but promoted co-inhibitory programmed cell death ligand 1 expression, and suppressed the antigen uptake, which ultimately led to the compromised ability of DCs to activate T cells. Furthermore, IDO also suppressed IL-12 secretion but enhanced that of IL-10 in DCs, which eventually induced T cells into tolerogenic phenotypes by inhibiting the differentiation of Th1 but promoting that of regulatory T cells. Collectively, the findings of the present study demonstrated that IDO is a key molecule for tolerogenic DC induction by metabolically regulating surface molecule and cytokine expression. This conclusion may lead to the targeted development of therapeutic drugs for autoimmune diseases. |
---|