Cargando…

Characterization of the Rhizosphere Bacterial Microbiome and Coffee Bean Fermentation in the Castillo-Tambo and Bourbon Varieties in the Popayán-Colombia Plateau

BACKGROUND: The microbial biodiversity and the role of microorganisms in the fermentation of washed coffee in Colombia were investigated using the Bourbon and Castillo coffee varieties. DNA sequencing was used to evaluate the soil microbial biota and their contribution to fermentation. The potential...

Descripción completa

Detalles Bibliográficos
Autores principales: Pino, Andrés Felipe Solis, Espinosa, Zuly Yuliana Delgado, Cabrera, Efren Venancio Ramos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127060/
https://www.ncbi.nlm.nih.gov/pubmed/37098489
http://dx.doi.org/10.1186/s12870-023-04182-2
Descripción
Sumario:BACKGROUND: The microbial biodiversity and the role of microorganisms in the fermentation of washed coffee in Colombia were investigated using the Bourbon and Castillo coffee varieties. DNA sequencing was used to evaluate the soil microbial biota and their contribution to fermentation. The potential benefits of these microorganisms were analyzed, including increased productivity and the need to understand the rhizospheric bacterial species to optimize these benefits. METHODS: This study used coffee beans for DNA extraction and 16 S rRNA sequencing. The beans were pulped, samples were stored at 4ºC, and the fermentation process was at 19.5ºC and 24ºC. The fermented mucilage and root-soil samples were collected in duplicate at 0, 12, and 24 h. DNA was extracted from the samples at a concentration of 20 ng/µl per sample, and the data obtained were analyzed using the Mothur platform. RESULTS: The study demonstrates that the coffee rhizosphere is a diverse ecosystem composed primarily of microorganisms that cannot be cultured in the laboratory. This suggests that the microbial community may vary depending on the coffee variety and play an essential role in fermentation and overall coffee quality. CONCLUSIONS: The study highlights the importance of understanding and optimizing the microbial diversity in coffee production, which could have implications for the sustainability and success of coffee production. DNA sequencing techniques can help characterize the structure of the soil microbial biota and evaluate its contribution to coffee fermentation. Finally, further research is needed to fully understand the biodiversity of coffee rhizospheric bacteria and their role.