Cargando…
284 Generalizable Machine Learning Methods for Subtyping Individuals on National Health Databases: Case Studies Using Data from HRS, N3C, and All of Us
OBJECTIVES/GOALS: While disease subtypes are critical for precision medicine, most projects use unipartite clustering methods such as k-means which are not fully automated, do not provide statistical significance, and are difficult to interpret. These gaps were addressed through bipartite networks a...
Autores principales: | Bhavnani, Suresh K., Zhang, Weibin, Bao, Daniel, Hatch, Sandra, Reistetter, Timothy, Downer, Brian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10129454/ http://dx.doi.org/10.1017/cts.2023.340 |
Ejemplares similares
-
341 The Impact of Critical Social Determinants of Health on Personal Medical Decisions: Analysis of Older Americans in All of Us
por: Bhavnani, Suresh K., et al.
Publicado: (2023) -
Subtyping Social Determinants of Health in All of Us: Network Analysis and Visualization Approach
por: Bhavnani, Suresh K., et al.
Publicado: (2023) -
DIRAC (P284)
por: Gravela, B
Publicado: (1995) -
Liquid Biopsy of Cerebrospinal Fluid Enables Selective Profiling of Glioma Molecular Subtypes at First Clinical Presentation
por: Orzan, Francesca, et al.
Publicado: (2023) -
Triple-Negative PAM50 Non-Basal Breast Cancer Subtype Predicts Benefit from Extended Adjuvant Capecitabine
por: Asleh, Karama, et al.
Publicado: (2023)