Cargando…

Isothermal Heteroepitaxy of Ge(1–x)Sn(x) Structures for Electronic and Photonic Applications

[Image: see text] Epitaxy of semiconductor-based quantum well structures is a challenging task since it requires precise control of the deposition at the submonolayer scale. In the case of Ge(1–x)Sn(x) alloys, the growth is particularly demanding since the lattice strain and the process temperature...

Descripción completa

Detalles Bibliográficos
Autores principales: Concepción, Omar, Søgaard, Nicolaj B., Bae, Jin-Hee, Yamamoto, Yuji, Tiedemann, Andreas T., Ikonic, Zoran, Capellini, Giovanni, Zhao, Qing-Tai, Grützmacher, Detlev, Buca, Dan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134428/
https://www.ncbi.nlm.nih.gov/pubmed/37124237
http://dx.doi.org/10.1021/acsaelm.3c00112
_version_ 1785031761324933120
author Concepción, Omar
Søgaard, Nicolaj B.
Bae, Jin-Hee
Yamamoto, Yuji
Tiedemann, Andreas T.
Ikonic, Zoran
Capellini, Giovanni
Zhao, Qing-Tai
Grützmacher, Detlev
Buca, Dan
author_facet Concepción, Omar
Søgaard, Nicolaj B.
Bae, Jin-Hee
Yamamoto, Yuji
Tiedemann, Andreas T.
Ikonic, Zoran
Capellini, Giovanni
Zhao, Qing-Tai
Grützmacher, Detlev
Buca, Dan
author_sort Concepción, Omar
collection PubMed
description [Image: see text] Epitaxy of semiconductor-based quantum well structures is a challenging task since it requires precise control of the deposition at the submonolayer scale. In the case of Ge(1–x)Sn(x) alloys, the growth is particularly demanding since the lattice strain and the process temperature greatly impact the composition of the epitaxial layers. In this paper, the realization of high-quality pseudomorphic Ge(1–x)Sn(x) layers with Sn content ranging from 6 at. % up to 15 at. % using isothermal processes in an industry-compatible reduced-pressure chemical vapor deposition reactor is presented. The epitaxy of Ge(1–x)Sn(x) layers has been optimized for a standard process offering a high Sn concentration at a large process window. By varying the N(2) carrier gas flow, isothermal heterostructure designs suitable for quantum transport and spintronic devices are obtained.
format Online
Article
Text
id pubmed-10134428
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-101344282023-04-28 Isothermal Heteroepitaxy of Ge(1–x)Sn(x) Structures for Electronic and Photonic Applications Concepción, Omar Søgaard, Nicolaj B. Bae, Jin-Hee Yamamoto, Yuji Tiedemann, Andreas T. Ikonic, Zoran Capellini, Giovanni Zhao, Qing-Tai Grützmacher, Detlev Buca, Dan ACS Appl Electron Mater [Image: see text] Epitaxy of semiconductor-based quantum well structures is a challenging task since it requires precise control of the deposition at the submonolayer scale. In the case of Ge(1–x)Sn(x) alloys, the growth is particularly demanding since the lattice strain and the process temperature greatly impact the composition of the epitaxial layers. In this paper, the realization of high-quality pseudomorphic Ge(1–x)Sn(x) layers with Sn content ranging from 6 at. % up to 15 at. % using isothermal processes in an industry-compatible reduced-pressure chemical vapor deposition reactor is presented. The epitaxy of Ge(1–x)Sn(x) layers has been optimized for a standard process offering a high Sn concentration at a large process window. By varying the N(2) carrier gas flow, isothermal heterostructure designs suitable for quantum transport and spintronic devices are obtained. American Chemical Society 2023-04-03 /pmc/articles/PMC10134428/ /pubmed/37124237 http://dx.doi.org/10.1021/acsaelm.3c00112 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Concepción, Omar
Søgaard, Nicolaj B.
Bae, Jin-Hee
Yamamoto, Yuji
Tiedemann, Andreas T.
Ikonic, Zoran
Capellini, Giovanni
Zhao, Qing-Tai
Grützmacher, Detlev
Buca, Dan
Isothermal Heteroepitaxy of Ge(1–x)Sn(x) Structures for Electronic and Photonic Applications
title Isothermal Heteroepitaxy of Ge(1–x)Sn(x) Structures for Electronic and Photonic Applications
title_full Isothermal Heteroepitaxy of Ge(1–x)Sn(x) Structures for Electronic and Photonic Applications
title_fullStr Isothermal Heteroepitaxy of Ge(1–x)Sn(x) Structures for Electronic and Photonic Applications
title_full_unstemmed Isothermal Heteroepitaxy of Ge(1–x)Sn(x) Structures for Electronic and Photonic Applications
title_short Isothermal Heteroepitaxy of Ge(1–x)Sn(x) Structures for Electronic and Photonic Applications
title_sort isothermal heteroepitaxy of ge(1–x)sn(x) structures for electronic and photonic applications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134428/
https://www.ncbi.nlm.nih.gov/pubmed/37124237
http://dx.doi.org/10.1021/acsaelm.3c00112
work_keys_str_mv AT concepcionomar isothermalheteroepitaxyofge1xsnxstructuresforelectronicandphotonicapplications
AT søgaardnicolajb isothermalheteroepitaxyofge1xsnxstructuresforelectronicandphotonicapplications
AT baejinhee isothermalheteroepitaxyofge1xsnxstructuresforelectronicandphotonicapplications
AT yamamotoyuji isothermalheteroepitaxyofge1xsnxstructuresforelectronicandphotonicapplications
AT tiedemannandreast isothermalheteroepitaxyofge1xsnxstructuresforelectronicandphotonicapplications
AT ikoniczoran isothermalheteroepitaxyofge1xsnxstructuresforelectronicandphotonicapplications
AT capellinigiovanni isothermalheteroepitaxyofge1xsnxstructuresforelectronicandphotonicapplications
AT zhaoqingtai isothermalheteroepitaxyofge1xsnxstructuresforelectronicandphotonicapplications
AT grutzmacherdetlev isothermalheteroepitaxyofge1xsnxstructuresforelectronicandphotonicapplications
AT bucadan isothermalheteroepitaxyofge1xsnxstructuresforelectronicandphotonicapplications