Cargando…
Deletion of DP148R, DP71L, and DP96R Attenuates African Swine Fever Virus, and the Mutant Strain Confers Complete Protection against Homologous Challenges in Pigs
The African swine fever virus (ASFV) has caused a devastating pandemic in domestic and wild swine, causing economic losses to the global swine industry. Recombinant live attenuated vaccines are an attractive option for ASFV treatment. However, safe and effective vaccines against ASFV are still scarc...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134827/ https://www.ncbi.nlm.nih.gov/pubmed/37017515 http://dx.doi.org/10.1128/jvi.00247-23 |
_version_ | 1785031837739909120 |
---|---|
author | Qi, Xiaolan Feng, Tao Ma, Zhao Zheng, Linlin Liu, Huanan Shi, Zhengwang Shen, Chaochao Li, Pan Wu, Panxue Ru, Yi Li, Dan Zhu, Zixiang Tian, Hong Wu, Sen Zheng, Haixue |
author_facet | Qi, Xiaolan Feng, Tao Ma, Zhao Zheng, Linlin Liu, Huanan Shi, Zhengwang Shen, Chaochao Li, Pan Wu, Panxue Ru, Yi Li, Dan Zhu, Zixiang Tian, Hong Wu, Sen Zheng, Haixue |
author_sort | Qi, Xiaolan |
collection | PubMed |
description | The African swine fever virus (ASFV) has caused a devastating pandemic in domestic and wild swine, causing economic losses to the global swine industry. Recombinant live attenuated vaccines are an attractive option for ASFV treatment. However, safe and effective vaccines against ASFV are still scarce, and more high-quality experimental vaccine strains need to be developed. In this study, we revealed that deletion of the ASFV genes DP148R, DP71L, and DP96R from the highly virulent isolate ASFV CN/GS/2018 (ASFV-GS) substantially attenuated virulence in swine. Pigs infected with 10(4) 50% hemadsorbing doses of the virus with these gene deletions remained healthy during the 19-day observation period. No ASFV infection was detected in contact pigs under the experimental conditions. Importantly, the inoculated pigs were protected against homologous challenges. Additionally, RNA sequence analysis showed that deletion of these viral genes induced significant upregulation of the host histone H3.1 gene (H3.1) and downregulation of the ASFV MGF110-7L gene. Knocking down the expression of H3.1 resulted in high levels of ASFV replication in primary porcine macrophages in vitro. These findings indicate that the deletion mutant virus ASFV-GS-Δ18R/NL/UK is a novel potential live attenuated vaccine candidate and one of the few experimental vaccine strains reported to induce full protection against the highly virulent ASFV-GS virus strain. IMPORTANCE Ongoing outbreaks of African swine fever (ASF) have considerably damaged the pig industry in affected countries. Thus, a safe and effective vaccine is important to control African swine fever spread. Here, an ASFV strain with three gene deletions was developed by knocking out the viral genes DP148R (MGF360-18R), NL (DP71L), and UK (DP96R). The results showed that the recombinant virus was completely attenuated in pigs and provided strong protection against parental virus challenge. Additionally, no viral genomes were detected in the sera of pigs housed with animals infected with the deletion mutant. Furthermore, transcriptome sequencing (RNA-seq) analysis revealed significant upregulation of histone H3.1 in virus-infected macrophage cultures and downregulation of the ASFV MGF110-7L gene after viral DP148R, UK, and NL deletion. Our study provides a valuable live attenuated vaccine candidate and potential gene targets for developing strategies for anti-ASFV treatment. |
format | Online Article Text |
id | pubmed-10134827 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-101348272023-04-28 Deletion of DP148R, DP71L, and DP96R Attenuates African Swine Fever Virus, and the Mutant Strain Confers Complete Protection against Homologous Challenges in Pigs Qi, Xiaolan Feng, Tao Ma, Zhao Zheng, Linlin Liu, Huanan Shi, Zhengwang Shen, Chaochao Li, Pan Wu, Panxue Ru, Yi Li, Dan Zhu, Zixiang Tian, Hong Wu, Sen Zheng, Haixue J Virol Vaccines and Antiviral Agents The African swine fever virus (ASFV) has caused a devastating pandemic in domestic and wild swine, causing economic losses to the global swine industry. Recombinant live attenuated vaccines are an attractive option for ASFV treatment. However, safe and effective vaccines against ASFV are still scarce, and more high-quality experimental vaccine strains need to be developed. In this study, we revealed that deletion of the ASFV genes DP148R, DP71L, and DP96R from the highly virulent isolate ASFV CN/GS/2018 (ASFV-GS) substantially attenuated virulence in swine. Pigs infected with 10(4) 50% hemadsorbing doses of the virus with these gene deletions remained healthy during the 19-day observation period. No ASFV infection was detected in contact pigs under the experimental conditions. Importantly, the inoculated pigs were protected against homologous challenges. Additionally, RNA sequence analysis showed that deletion of these viral genes induced significant upregulation of the host histone H3.1 gene (H3.1) and downregulation of the ASFV MGF110-7L gene. Knocking down the expression of H3.1 resulted in high levels of ASFV replication in primary porcine macrophages in vitro. These findings indicate that the deletion mutant virus ASFV-GS-Δ18R/NL/UK is a novel potential live attenuated vaccine candidate and one of the few experimental vaccine strains reported to induce full protection against the highly virulent ASFV-GS virus strain. IMPORTANCE Ongoing outbreaks of African swine fever (ASF) have considerably damaged the pig industry in affected countries. Thus, a safe and effective vaccine is important to control African swine fever spread. Here, an ASFV strain with three gene deletions was developed by knocking out the viral genes DP148R (MGF360-18R), NL (DP71L), and UK (DP96R). The results showed that the recombinant virus was completely attenuated in pigs and provided strong protection against parental virus challenge. Additionally, no viral genomes were detected in the sera of pigs housed with animals infected with the deletion mutant. Furthermore, transcriptome sequencing (RNA-seq) analysis revealed significant upregulation of histone H3.1 in virus-infected macrophage cultures and downregulation of the ASFV MGF110-7L gene after viral DP148R, UK, and NL deletion. Our study provides a valuable live attenuated vaccine candidate and potential gene targets for developing strategies for anti-ASFV treatment. American Society for Microbiology 2023-04-05 /pmc/articles/PMC10134827/ /pubmed/37017515 http://dx.doi.org/10.1128/jvi.00247-23 Text en Copyright © 2023 Qi et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Vaccines and Antiviral Agents Qi, Xiaolan Feng, Tao Ma, Zhao Zheng, Linlin Liu, Huanan Shi, Zhengwang Shen, Chaochao Li, Pan Wu, Panxue Ru, Yi Li, Dan Zhu, Zixiang Tian, Hong Wu, Sen Zheng, Haixue Deletion of DP148R, DP71L, and DP96R Attenuates African Swine Fever Virus, and the Mutant Strain Confers Complete Protection against Homologous Challenges in Pigs |
title | Deletion of DP148R, DP71L, and DP96R Attenuates African Swine Fever Virus, and the Mutant Strain Confers Complete Protection against Homologous Challenges in Pigs |
title_full | Deletion of DP148R, DP71L, and DP96R Attenuates African Swine Fever Virus, and the Mutant Strain Confers Complete Protection against Homologous Challenges in Pigs |
title_fullStr | Deletion of DP148R, DP71L, and DP96R Attenuates African Swine Fever Virus, and the Mutant Strain Confers Complete Protection against Homologous Challenges in Pigs |
title_full_unstemmed | Deletion of DP148R, DP71L, and DP96R Attenuates African Swine Fever Virus, and the Mutant Strain Confers Complete Protection against Homologous Challenges in Pigs |
title_short | Deletion of DP148R, DP71L, and DP96R Attenuates African Swine Fever Virus, and the Mutant Strain Confers Complete Protection against Homologous Challenges in Pigs |
title_sort | deletion of dp148r, dp71l, and dp96r attenuates african swine fever virus, and the mutant strain confers complete protection against homologous challenges in pigs |
topic | Vaccines and Antiviral Agents |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134827/ https://www.ncbi.nlm.nih.gov/pubmed/37017515 http://dx.doi.org/10.1128/jvi.00247-23 |
work_keys_str_mv | AT qixiaolan deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs AT fengtao deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs AT mazhao deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs AT zhenglinlin deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs AT liuhuanan deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs AT shizhengwang deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs AT shenchaochao deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs AT lipan deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs AT wupanxue deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs AT ruyi deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs AT lidan deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs AT zhuzixiang deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs AT tianhong deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs AT wusen deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs AT zhenghaixue deletionofdp148rdp71landdp96rattenuatesafricanswinefevervirusandthemutantstrainconferscompleteprotectionagainsthomologouschallengesinpigs |