Cargando…
Metformin Protects Radiation-Induced Early Brain Injury by Reducing Inflammation and DNA Damage
Radiation-induced brain injury (RIBI) is one of the most common and fatal complications of cranial radiation therapy (CRT); however, no effective intervention is available currently. Metformin has been reported to have anti-RIBI activity as a first-line anti-diabetic drug. However, the mechanism of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10137040/ https://www.ncbi.nlm.nih.gov/pubmed/37190610 http://dx.doi.org/10.3390/brainsci13040645 |
Sumario: | Radiation-induced brain injury (RIBI) is one of the most common and fatal complications of cranial radiation therapy (CRT); however, no effective intervention is available currently. Metformin has been reported to have anti-RIBI activity as a first-line anti-diabetic drug. However, the mechanism of action is unclear. An RIBI mice model and an in vitro cell model under 30 and 10 Gy (60)Co γ-rays exposure were established to investigate the mechanism of metformin in RIBI. The results showed that pre-treatment with metformin protects hippocampal neurogenesis in the brain of mice and improves learning and memory ability after irradiation. Further investigations revealed that metformin pretreatment reduces inflammation and decreases DNA damage in the in vitro BV2 cell line. In addition, we observed that metformin inhibits the activation of IκB and IRF-3, which are downstream components of the cGAS-STING pathway. These findings suggest that metformin might protect the brain from RIBI, at least partly, through the cGAS pathway, making it a potential therapeutic drug for RIBI. |
---|