Cargando…
A GHz Silicon-Based Width Extensional Mode MEMS Resonator with Q over 10,000
This work presents a silicon-based capacitively transduced width extensional mode (WEM) MEMS rectangular plate resonator with quality factor (Q) of over 10,000 at a frequency of greater than 1 GHz. The Q value, determined by various loss mechanisms, was analyzed and quantified via numerical calculat...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143676/ https://www.ncbi.nlm.nih.gov/pubmed/37112146 http://dx.doi.org/10.3390/s23083808 |
Sumario: | This work presents a silicon-based capacitively transduced width extensional mode (WEM) MEMS rectangular plate resonator with quality factor (Q) of over 10,000 at a frequency of greater than 1 GHz. The Q value, determined by various loss mechanisms, was analyzed and quantified via numerical calculation and simulation. The energy loss of high order WEMs is dominated by anchor loss and phonon-phonon interaction dissipation (PPID). High-order resonators possess high effective stiffness, resulting in large motional impedance. To suppress anchor loss and reduce motional impedance, a novel combined tether was designed and comprehensively optimized. The resonators were batch fabricated based on a reliable and simple silicon-on-insulator (SOI)-based fabrication process. The combined tether experimentally contributes to low anchor loss and motional impedance. Especially in the 4th WEM, the resonator with a resonance frequency of 1.1 GHz and a Q of 10,920 was demonstrated, corresponding to the promising f × Q product of 1.2 × 10(13). By using combined tether, the motional impedance decreases by 33% and 20% in 3rd and 4th modes, respectively. The WEM resonator proposed in this work has potential application for high-frequency wireless communication systems. |
---|