Cargando…
Continuous Production of Ethanol, 1-Butanol and 1-Hexanol from CO with a Synthetic Co-Culture of Clostridia Applying a Cascade of Stirred-Tank Bioreactors
Syngas fermentation with clostridial co-cultures is promising for the conversion of CO to alcohols. A CO sensitivity study with Clostridium kluyveri monocultures in batch operated stirred-tank bioreactors revealed total growth inhibition of C. kluyveri already at 100 mbar CO, but stable biomass conc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144111/ https://www.ncbi.nlm.nih.gov/pubmed/37110426 http://dx.doi.org/10.3390/microorganisms11041003 |
_version_ | 1785034023719927808 |
---|---|
author | Bäumler, Miriam Burgmaier, Veronika Herrmann, Fabian Mentges, Julian Schneider, Martina Ehrenreich, Armin Liebl, Wolfgang Weuster-Botz, Dirk |
author_facet | Bäumler, Miriam Burgmaier, Veronika Herrmann, Fabian Mentges, Julian Schneider, Martina Ehrenreich, Armin Liebl, Wolfgang Weuster-Botz, Dirk |
author_sort | Bäumler, Miriam |
collection | PubMed |
description | Syngas fermentation with clostridial co-cultures is promising for the conversion of CO to alcohols. A CO sensitivity study with Clostridium kluyveri monocultures in batch operated stirred-tank bioreactors revealed total growth inhibition of C. kluyveri already at 100 mbar CO, but stable biomass concentrations and ongoing chain elongation at 800 mbar CO. On/off-gassing with CO indicated a reversible inhibition of C. kluyveri. A continuous supply of sulfide led to increased autotrophic growth and ethanol formation by Clostridium carboxidivorans even at unfavorable low CO concentrations. Based on these results, a continuously operated cascade of two stirred-tank reactors was established with a synthetic co-culture of both Clostridia. An amount of 100 mbar CO and additional sulfide supply enabled growth and chain elongation in the first bioreactor, whereas 800 mbar CO resulted in an efficient reduction of organic acids and de-novo synthesis of C2-C6 alcohols in the second reactor. High alcohol/acid ratios of 4.5–9.1 (w/w) were achieved in the steady state of the cascade process, and the space-time yields of the alcohols produced were improved by factors of 1.9–5.3 compared to a batch process. Further improvement of continuous production of medium chain alcohols from CO may be possible by applying less CO-sensitive chain-elongating bacteria in co-cultures. |
format | Online Article Text |
id | pubmed-10144111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-101441112023-04-29 Continuous Production of Ethanol, 1-Butanol and 1-Hexanol from CO with a Synthetic Co-Culture of Clostridia Applying a Cascade of Stirred-Tank Bioreactors Bäumler, Miriam Burgmaier, Veronika Herrmann, Fabian Mentges, Julian Schneider, Martina Ehrenreich, Armin Liebl, Wolfgang Weuster-Botz, Dirk Microorganisms Article Syngas fermentation with clostridial co-cultures is promising for the conversion of CO to alcohols. A CO sensitivity study with Clostridium kluyveri monocultures in batch operated stirred-tank bioreactors revealed total growth inhibition of C. kluyveri already at 100 mbar CO, but stable biomass concentrations and ongoing chain elongation at 800 mbar CO. On/off-gassing with CO indicated a reversible inhibition of C. kluyveri. A continuous supply of sulfide led to increased autotrophic growth and ethanol formation by Clostridium carboxidivorans even at unfavorable low CO concentrations. Based on these results, a continuously operated cascade of two stirred-tank reactors was established with a synthetic co-culture of both Clostridia. An amount of 100 mbar CO and additional sulfide supply enabled growth and chain elongation in the first bioreactor, whereas 800 mbar CO resulted in an efficient reduction of organic acids and de-novo synthesis of C2-C6 alcohols in the second reactor. High alcohol/acid ratios of 4.5–9.1 (w/w) were achieved in the steady state of the cascade process, and the space-time yields of the alcohols produced were improved by factors of 1.9–5.3 compared to a batch process. Further improvement of continuous production of medium chain alcohols from CO may be possible by applying less CO-sensitive chain-elongating bacteria in co-cultures. MDPI 2023-04-12 /pmc/articles/PMC10144111/ /pubmed/37110426 http://dx.doi.org/10.3390/microorganisms11041003 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bäumler, Miriam Burgmaier, Veronika Herrmann, Fabian Mentges, Julian Schneider, Martina Ehrenreich, Armin Liebl, Wolfgang Weuster-Botz, Dirk Continuous Production of Ethanol, 1-Butanol and 1-Hexanol from CO with a Synthetic Co-Culture of Clostridia Applying a Cascade of Stirred-Tank Bioreactors |
title | Continuous Production of Ethanol, 1-Butanol and 1-Hexanol from CO with a Synthetic Co-Culture of Clostridia Applying a Cascade of Stirred-Tank Bioreactors |
title_full | Continuous Production of Ethanol, 1-Butanol and 1-Hexanol from CO with a Synthetic Co-Culture of Clostridia Applying a Cascade of Stirred-Tank Bioreactors |
title_fullStr | Continuous Production of Ethanol, 1-Butanol and 1-Hexanol from CO with a Synthetic Co-Culture of Clostridia Applying a Cascade of Stirred-Tank Bioreactors |
title_full_unstemmed | Continuous Production of Ethanol, 1-Butanol and 1-Hexanol from CO with a Synthetic Co-Culture of Clostridia Applying a Cascade of Stirred-Tank Bioreactors |
title_short | Continuous Production of Ethanol, 1-Butanol and 1-Hexanol from CO with a Synthetic Co-Culture of Clostridia Applying a Cascade of Stirred-Tank Bioreactors |
title_sort | continuous production of ethanol, 1-butanol and 1-hexanol from co with a synthetic co-culture of clostridia applying a cascade of stirred-tank bioreactors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144111/ https://www.ncbi.nlm.nih.gov/pubmed/37110426 http://dx.doi.org/10.3390/microorganisms11041003 |
work_keys_str_mv | AT baumlermiriam continuousproductionofethanol1butanoland1hexanolfromcowithasyntheticcocultureofclostridiaapplyingacascadeofstirredtankbioreactors AT burgmaierveronika continuousproductionofethanol1butanoland1hexanolfromcowithasyntheticcocultureofclostridiaapplyingacascadeofstirredtankbioreactors AT herrmannfabian continuousproductionofethanol1butanoland1hexanolfromcowithasyntheticcocultureofclostridiaapplyingacascadeofstirredtankbioreactors AT mentgesjulian continuousproductionofethanol1butanoland1hexanolfromcowithasyntheticcocultureofclostridiaapplyingacascadeofstirredtankbioreactors AT schneidermartina continuousproductionofethanol1butanoland1hexanolfromcowithasyntheticcocultureofclostridiaapplyingacascadeofstirredtankbioreactors AT ehrenreicharmin continuousproductionofethanol1butanoland1hexanolfromcowithasyntheticcocultureofclostridiaapplyingacascadeofstirredtankbioreactors AT lieblwolfgang continuousproductionofethanol1butanoland1hexanolfromcowithasyntheticcocultureofclostridiaapplyingacascadeofstirredtankbioreactors AT weusterbotzdirk continuousproductionofethanol1butanoland1hexanolfromcowithasyntheticcocultureofclostridiaapplyingacascadeofstirredtankbioreactors |